499 research outputs found

    A Fine Grain Sentiment Analysis with Semantics in Tweets

    Get PDF
    Social networking is nowadays a major source of new information in the world. Microblogging sites like Twitter have millions of active users (320 million active users on Twitter on the 30th September 2015) who share their opinions in real time, generating huge amounts of data. These data are, in most cases, available to any network user. The opinions of Twitter users have become something that companies and other organisations study to see whether or not their users like the products or services they offer. One way to assess opinions on Twitter is classifying the sentiment of the tweets as positive or negative. However, this process is usually done at a coarse grain level and the tweets are classified as positive or negative. However, tweets can be partially positive and negative at the same time, referring to different entities. As a result, general approaches usually classify these tweets as “neutral”. In this paper, we propose a semantic analysis of tweets, using Natural Language Processing to classify the sentiment with regards to the entities mentioned in each tweet. We offer a combination of Big Data tools (under the Apache Hadoop framework) and sentiment analysis using RDF graphs supporting the study of the tweet’s lexicon. This work has been empirically validated using a sporting event, the 2014 Phillips 66 Big 12 Men’s Basketball Championship. The experimental results show a clear correlation between the predicted sentiments with specific events during the championship

    Trustworthiness in Social Big Data Incorporating Semantic Analysis, Machine Learning and Distributed Data Processing

    Get PDF
    This thesis presents several state-of-the-art approaches constructed for the purpose of (i) studying the trustworthiness of users in Online Social Network platforms, (ii) deriving concealed knowledge from their textual content, and (iii) classifying and predicting the domain knowledge of users and their content. The developed approaches are refined through proof-of-concept experiments, several benchmark comparisons, and appropriate and rigorous evaluation metrics to verify and validate their effectiveness and efficiency, and hence, those of the applied frameworks

    A Complete Text-Processing Pipeline for Business Performance Tracking

    Get PDF
    Natural text processing is amongst the most researched domains because of its varied applications. However, most existing works focus on improving the performance of machine learning models instead of applying those models in practical business cases. We present a text processing pipeline that enables business users to identify business performance factors through sentiment analysis and opinion summarization of customer feedback. The pipeline performs fine-grained sentiment classification of customer comments, and the results are used for the sentiment trend tracking process. The pipeline also performs topic modelling in which key aspects of customer comments are clustered using their co-relation scores. The results are used to produce abstractive opinion summarization. The proposed text processing pipeline is evaluated using two business cases in the food and retail domains. The performance of the sentiment analysis component is measured using mean absolute error (MAE) rate, root mean squared error (RMSE) rate, and coefficient of determination

    SmokEng: Towards Fine-grained Classification of Tobacco-related Social Media Text

    Full text link
    Contemporary datasets on tobacco consumption focus on one of two topics, either public health mentions and disease surveillance, or sentiment analysis on topical tobacco products and services. However, two primary considerations are not accounted for, the language of the demographic affected and a combination of the topics mentioned above in a fine-grained classification mechanism. In this paper, we create a dataset of 3144 tweets, which are selected based on the presence of colloquial slang related to smoking and analyze it based on the semantics of the tweet. Each class is created and annotated based on the content of the tweets such that further hierarchical methods can be easily applied. Further, we prove the efficacy of standard text classification methods on this dataset, by designing experiments which do both binary as well as multi-class classification. Our experiments tackle the identification of either a specific topic (such as tobacco product promotion), a general mention (cigarettes and related products) or a more fine-grained classification. This methodology paves the way for further analysis, such as understanding sentiment or style, which makes this dataset a vital contribution to both disease surveillance and tobacco use research.Comment: Accepted at the Workshop on Noisy User-generated Text (W-NUT) at EMNLP-IJCNLP 201

    Editor’s Note

    Get PDF
    Digital information has redefined the way in which both public and private organizations are faced with the use of data to improve decision making. The importance of Big Data lies in the huge amount of data generated every day, especially following the emergence of online social networks (Facebook, Twitter, Google Plus, etc.) and the exponential growth of devices such as smartphones, smartwatches and other wearables, sensor networks, etc. as well as the possibility of taking into account increasingly updated and more varied information for decision making. [1] With proper Big Data analysis we can spot trends, get models from historical data for predicting future events or extract patterns from user behaviour, and thus be able to tailor services to the needs of users in a better way

    Measuring relative opinion from location-based social media: A case study of the 2016 U.S. presidential election

    Get PDF
    Social media has become an emerging alternative to opinion polls for public opinion collection, while it is still posing many challenges as a passive data source, such as structurelessness, quantifiability, and representativeness. Social media data with geotags provide new opportunities to unveil the geographic locations of users expressing their opinions. This paper aims to answer two questions: 1) whether quantifiable measurement of public opinion can be obtained from social media and 2) whether it can produce better or complementary measures compared to opinion polls. This research proposes a novel approach to measure the relative opinion of Twitter users towards public issues in order to accommodate more complex opinion structures and take advantage of the geography pertaining to the public issues. To ensure that this new measure is technically feasible, a modeling framework is developed including building a training dataset by adopting a state-of-the-art approach and devising a new deep learning method called Opinion-Oriented Word Embedding. With a case study of the tweets selected for the 2016 U.S. presidential election, we demonstrate the predictive superiority of our relative opinion approach and we show how it can aid visual analytics and support opinion predictions. Although the relative opinion measure is proved to be more robust compared to polling, our study also suggests that the former can advantageously complement the later in opinion prediction

    Basic tasks of sentiment analysis

    Full text link
    Subjectivity detection is the task of identifying objective and subjective sentences. Objective sentences are those which do not exhibit any sentiment. So, it is desired for a sentiment analysis engine to find and separate the objective sentences for further analysis, e.g., polarity detection. In subjective sentences, opinions can often be expressed on one or multiple topics. Aspect extraction is a subtask of sentiment analysis that consists in identifying opinion targets in opinionated text, i.e., in detecting the specific aspects of a product or service the opinion holder is either praising or complaining about

    Target-oriented Sentiment Classification with Sequential Cross-modal Semantic Graph

    Full text link
    Multi-modal aspect-based sentiment classification (MABSC) is task of classifying the sentiment of a target entity mentioned in a sentence and an image. However, previous methods failed to account for the fine-grained semantic association between the image and the text, which resulted in limited identification of fine-grained image aspects and opinions. To address these limitations, in this paper we propose a new approach called SeqCSG, which enhances the encoder-decoder sentiment classification framework using sequential cross-modal semantic graphs. SeqCSG utilizes image captions and scene graphs to extract both global and local fine-grained image information and considers them as elements of the cross-modal semantic graph along with tokens from tweets. The sequential cross-modal semantic graph is represented as a sequence with a multi-modal adjacency matrix indicating relationships between elements. Experimental results show that the approach outperforms existing methods and achieves state-of-the-art performance on two standard datasets. Further analysis has demonstrated that the model can implicitly learn the correlation between fine-grained information of the image and the text with the given target. Our code is available at https://github.com/zjukg/SeqCSG.Comment: ICANN 2023, https://github.com/zjukg/SeqCS
    • …
    corecore