3,929 research outputs found

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Codificação de bloco espaço-tempo na habilitação de sistemas MIMO-OFDM

    Get PDF
    The available bandwidth in the radio frequency spectrum is decreasing due to the growing number of applications and users. Therefore, in order to ensure a sustainable evolution in this area it is crucial to develop strategies to optimize the spectrum usage. Joining RADAR and communication functionalities in a single terminal represents exactly this same strategy. As such, the two functionalities, which usually compete for the same radio resources, can coexist through a cooperative relation in which they can thrive and cease to introduce interferences in between them. In this dissertation, the integration of both systems is achieved through the use of OFDM as the common waveform. Through the space time/frequency block codes, namely the Tarokh coding it is possible to introduce spatial diversity and orthogonality to the system, therefore increasing the system’s robustness and allowing to use the virtual antenna concept, which enables improved RADAR resolution and detection. In order to evaluate the system’s performance, a simulation platform was developed. In these simulations we start by firstly considering RADAR detection for single and multiple antenna systems and then integrate the radar and communication functionalities. We have verified the good performance levels of the proposed system, which thanks to its low complexity can be an interesting RadCom approach for future wireless systems.A largura de banda disponível no espectro de radio frequência enfrenta uma diminuição face ao crescente número de aplicações e utilizadores. Assim, por forma a assegurar uma evolução sustentável neste campo é fulcral desenvolver estratégias que otimizem o uso do espectro. A junção das funcionalidades RADAR e comunicação num só terminal faz parte dessa estratégia. Desta forma, duas funcionalidades usualmente concorrentes pelos mesmos recursos radio, podem coexistir em cooperação, sem interferência entre ambos. Nesta dissertação a integração dos dois sistemas é conseguida através do uso do OFDM como forma de onda comum. Através de códigos desenhados no espaço-tempo/frequência, nomeadamente a codificação de Tarokh, foi possível introduzir diversidade espacial e ortogonalidade no sistema, aumentando assim a sua robustez e permitindo o uso do conceito de antenas virtuais, que por sua vez possibilitam uma melhoria na resolução e deteção do RADAR. De forma a avaliar o desempenho do sistema desenvolveu-se uma plataforma de simulação. Nesta plataforma começou-se por considerar a deteção RADAR para sistemas com uma e múltiplas antenas, onde posteriormente se integraram as funcionalidades de comunicação. Os resultados obtidos mostraram um excelente desempenho do sistema, que devido à sua baixa complexidade, pode ser um sistema RadCom interessante para os futuros sistemas sem fios.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Continued study of NAVSTAR/GPS for general aviation

    Get PDF
    A conceptual approach for examining the full potential of Global Positioning Systems (GPS) for the general aviation community is presented. Aspects of an experimental program to demonstrate these concepts are discussed. The report concludes with the observation that the true potential of GPS can only be exploited by utilization in concert with a data link. The capability afforded by the combination of position location and reporting stimulates the concept of GPS providing the auxiliary functions of collision avoidance, and approach and landing guidance. A series of general recommendations for future NASA and civil community efforts in order to continue to support GPS for general aviation are included

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future
    • …
    corecore