1,120 research outputs found

    Robot Composite Learning and the Nunchaku Flipping Challenge

    Full text link
    Advanced motor skills are essential for robots to physically coexist with humans. Much research on robot dynamics and control has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this paper, we present a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation. The method tackles advanced motor skills that require dynamic time-critical maneuver, complex contact control, and handling partly soft partly rigid objects. We also introduce the "nunchaku flipping challenge", an extreme test that puts hard requirements to all these three aspects. Continued from our previous presentations, this paper introduces the latest update of the composite learning scheme and the physical success of the nunchaku flipping challenge

    Adaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVs

    Get PDF
    Unmanned aerial vehicles (UAV) are a suitable solution for monitoring growing cultures due to the possibility of covering a large area and the necessity of periodic monitoring. In inspection and monitoring tasks, the UAV must find an optimal or near-optimal collision-free route given initial and target positions. In this sense, path-planning strategies are crucial, especially online path planning that can represent the robot’s operational environment or for control purposes. Therefore, this paper proposes an online adaptive path-planning solution based on the fusion of rapidly exploring random trees (RRT) and deep reinforcement learning (DRL) algorithms applied to the generation and control of the UAV autonomous trajectory during an olive-growing fly traps inspection task. The main objective of this proposal is to provide a reliable route for the UAV to reach the inspection points in the tree space to capture an image of the trap autonomously, avoiding possible obstacles present in the environment. The proposed framework was tested in a simulated environment using Gazebo and ROS. The results showed that the proposed solution accomplished the trial for environments up to 300 m3 and with 10 dynamic objects.The authors would like to thank the following Brazilian Agencies CEFET-RJ, CAPES, CNPq, and FAPERJ. The authors also want to thank the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto PolitĂ©cnico de Bragança–IPB (UIDB/05757/2020 and UIDP/05757/2020), the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, and LaboratĂłrio Associado para a Sustentabilidade e Tecnologia em RegiĂ”es de Montanha (SusTEC) and IPB, Portugal. This work was carried out under the Project “OleaChain: CompetĂȘncias para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF).info:eu-repo/semantics/publishedVersio

    Multi-expert learning of adaptive legged locomotion

    Get PDF
    Achieving versatile robot locomotion requires motor skills which can adapt to previously unseen situations. We propose a Multi-Expert Learning Architecture (MELA) that learns to generate adaptive skills from a group of representative expert skills. During training, MELA is first initialised by a distinct set of pre-trained experts, each in a separate deep neural network (DNN). Then by learning the combination of these DNNs using a Gating Neural Network (GNN), MELA can acquire more specialised experts and transitional skills across various locomotion modes. During runtime, MELA constantly blends multiple DNNs and dynamically synthesises a new DNN to produce adaptive behaviours in response to changing situations. This approach leverages the advantages of trained expert skills and the fast online synthesis of adaptive policies to generate responsive motor skills during the changing tasks. Using a unified MELA framework, we demonstrated successful multi-skill locomotion on a real quadruped robot that performed coherent trotting, steering, and fall recovery autonomously, and showed the merit of multi-expert learning generating behaviours which can adapt to unseen scenarios

    Soft Robot-Assisted Minimally Invasive Surgery and Interventions: Advances and Outlook

    Get PDF
    Since the emergence of soft robotics around two decades ago, research interest in the field has escalated at a pace. It is fuelled by the industry's appreciation of the wide range of soft materials available that can be used to create highly dexterous robots with adaptability characteristics far beyond that which can be achieved with rigid component devices. The ability, inherent in soft robots, to compliantly adapt to the environment, has significantly sparked interest from the surgical robotics community. This article provides an in-depth overview of recent progress and outlines the remaining challenges in the development of soft robotics for minimally invasive surgery

    Cooperative Carrying Control for Mobile Robots in Indoor Scenario

    Get PDF
    openIn recent years, there has been a growing interest in designing multi-robot systems to provide cost-effective, fault-tolerant and reliable solutions to a variety of automated applications. In particular, from an industrial perspective, cooperative carrying techniques based on Reinforcement Learning (RL) gained a strong interest. Compared to a single robot system, this approach improves the system’s robustness and manipulation dexterity in the transportation of large objects. However, in the current state of the art, the environments’ dynamism and re-training procedure represent a considerable limitation for most of the existing cooperative carrying RL-based solutions. In this thesis, we employ the Value Propagation Networks (VPN) algorithm for cooperative multi-robot transport scenarios. We extend and test the Delta-Q cooperation metric to V-value-based agents, and we investigate path generation algorithms and trajectory tracking controllers for differential drive robots. Moreover, we explore localization algorithms in order to take advantage of range sensors and mitigate the drift errors of wheel odometry, and we conduct experiments to derive key performance indicators of range sensors' precision. Lastly, we perform realistic industrial indoor simulations using Robot Operating System (ROS) and Gazebo 3D visualization tool, including physical objects and 6G communication constraints. Our results showed that the proposed VPN-based algorithm outperforms the current state-of-the-art since the trajectory planning and dynamic obstacle avoidance are performed in real-time, without re-training the model, and under constant 6G network coverage.In recent years, there has been a growing interest in designing multi-robot systems to provide cost-effective, fault-tolerant and reliable solutions to a variety of automated applications. In particular, from an industrial perspective, cooperative carrying techniques based on Reinforcement Learning (RL) gained a strong interest. Compared to a single robot system, this approach improves the system’s robustness and manipulation dexterity in the transportation of large objects. However, in the current state of the art, the environments’ dynamism and re-training procedure represent a considerable limitation for most of the existing cooperative carrying RL-based solutions. In this thesis, we employ the Value Propagation Networks (VPN) algorithm for cooperative multi-robot transport scenarios. We extend and test the Delta-Q cooperation metric to V-value-based agents, and we investigate path generation algorithms and trajectory tracking controllers for differential drive robots. Moreover, we explore localization algorithms in order to take advantage of range sensors and mitigate the drift errors of wheel odometry, and we conduct experiments to derive key performance indicators of range sensors' precision. Lastly, we perform realistic industrial indoor simulations using Robot Operating System (ROS) and Gazebo 3D visualization tool, including physical objects and 6G communication constraints. Our results showed that the proposed VPN-based algorithm outperforms the current state-of-the-art since the trajectory planning and dynamic obstacle avoidance are performed in real-time, without re-training the model, and under constant 6G network coverage

    Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism

    Get PDF
    Robot manipulator has become an exciting topic for many researchers during several decades. They have investigated the advanced algorithms such as sliding mode control, neural network, or genetic scheme to implement these developments. However, they lacked the integration of these algorithms to explore many potential expansions. Simultaneously, the complicated system requires a lot of computational costs, which is not always supported. Therefore, this paper presents a novel design of switching mechanisms to control the robot manipulator. This investigation is expected to achieve superior performance by flexibly adjusting various strategies for better selection. The Proportional-Integral-Derivative (PID) scheme is well-known, easy to implement, and ensures rapid computation while it might not have much control effect. The advanced interval type-2 fuzzy sliding mode control properly deals with nonlinear factors and disturbances. Consequently, the PID scheme is switched when the tracking error is less than the threshold or is far from the target. Otherwise, the interval type-2 fuzzy sliding mode control scheme is activated to cope with unknown factors. The main contributions of this paper are (i) the recommendation of a suitable switching mechanism to drive the robot manipulator, (ii) the successful integration of the interval type-2 fuzzy sliding mode control to track the desired trajectory, and (iii) the launching of several tests to validate the proposed controller with robot model. From these achievements, it would be stated that the proposed approach is effective in tracking performance, robust in disturbance-rejection, and feasible in practical implementation

    Learning dynamic motor skills for terrestrial locomotion

    Get PDF
    The use of Deep Reinforcement Learning (DRL) has received significantly increased attention from researchers within the robotics field following the success of AlphaGo, which demonstrated the superhuman capabilities of deep reinforcement algorithms in terms of solving complex tasks by beating professional GO players. Since then, an increasing number of researchers have investigated the potential of using DRL to solve complex high-dimensional robotic tasks, such as legged locomotion, arm manipulation, and grasping, which are difficult tasks to solve using conventional optimization approaches. Understanding and recreating various modes of terrestrial locomotion has been of long-standing interest to roboticists. A large variety of applications, such as rescue missions, disaster responses and science expeditions, strongly demand mobility and versatility in legged locomotion to enable task completion. In order to create useful physical robots, it is necessary to design controllers to synthesize the complex locomotion behaviours observed in humans and other animals. In the past, legged locomotion was mainly achieved via analytical engineering approaches. However, conventional analytical approaches have their limitations, as they require relatively large amounts of human effort and knowledge. Machine learning approaches, such as DRL, require less human effort compared to analytical approaches. The project conducted for this thesis explores the feasibility of using DRL to acquire control policies comparable to, or better than, those acquired through analytical approaches while requiring less human effort. In this doctoral thesis, we developed a Multi-Expert Learning Architecture (MELA) that uses DRL to learn multi-skill control policies capable of synthesizing a diverse set of dynamic locomotion behaviours for legged robots. We first proposed a novel DRL framework for the locomotion of humanoid robots. The proposed learning framework is capable of acquiring robust and dynamic motor skills for humanoids, including balancing, walking, standing-up fall recovery. We subsequently improved upon the learning framework and design a novel multi-expert learning architecture that is capable of fusing multiple motor skills together in a seamless fashion and ultimately deploy this framework on a real quadrupedal robot. The successful deployment of learned control policies on a real quadrupedal robot demonstrates the feasibility of using an Artificial Intelligence (AI) based approach for real robot motion control

    Challenges and Trends of Machine Learning in the Myoelectric Control System for Upper Limb Exoskeletons and Exosuits

    Get PDF
    Myoelectric control systems as the emerging control strategies for upper limb wearable robots have shown their efficacy and applicability to effectively provide motion assistance and/or restore motor functions in people with impairment or disabilities, as well as augment physical performance in able-bodied individuals. In myoelectric control, electromyographic (EMG) signals from muscles are utilized, improving adaptability and human-robot interactions during various motion tasks. Machine learning has been widely applied in myoelectric control systems due to its advantages in detecting and classifying various human motions and motion intentions. This chapter illustrates the challenges and trends in recent machine learning algorithms implemented on myoelectric control systems designed for upper limb wearable robots, and highlights the key focus areas for future research directions. Different modalities of recent machine learning-based myoelectric control systems are described in detail, and their advantages and disadvantages are summarized. Furthermore, key design aspects and the type of experiments conducted to validate the efficacy of the proposed myoelectric controllers are explained. Finally, the challenges and limitations of current myoelectric control systems using machine learning algorithms are analyzed, from which future research directions are suggested

    Human-Robot Collaborations in Industrial Automation

    Get PDF
    Technology is changing the manufacturing world. For example, sensors are being used to track inventories from the manufacturing floor up to a retail shelf or a customer’s door. These types of interconnected systems have been called the fourth industrial revolution, also known as Industry 4.0, and are projected to lower manufacturing costs. As industry moves toward these integrated technologies and lower costs, engineers will need to connect these systems via the Internet of Things (IoT). These engineers will also need to design how these connected systems interact with humans. The focus of this Special Issue is the smart sensors used in these human–robot collaborations
    • 

    corecore