2,086 research outputs found

    funcX: A Federated Function Serving Fabric for Science

    Full text link
    Exploding data volumes and velocities, new computational methods and platforms, and ubiquitous connectivity demand new approaches to computation in the sciences. These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e.g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available. They also require new design approaches in which monolithic applications can be decomposed into smaller components, that may in turn be executed separately and on the most suitable resources. To address these needs we present funcX---a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote function execution. funcX's endpoint software can transform existing clouds, clusters, and supercomputers into function serving systems, while funcX's cloud-hosted service provides transparent, secure, and reliable function execution across a federated ecosystem of endpoints. We motivate the need for funcX with several scientific case studies, present our prototype design and implementation, show optimizations that deliver throughput in excess of 1 million functions per second, and demonstrate, via experiments on two supercomputers, that funcX can scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap with arXiv:1908.0490

    SMPC-based Federated Learning for 6G enabled Internet of Medical Things

    Full text link
    Rapidly developing intelligent healthcare systems are underpinned by Sixth Generation (6G) connectivity, ubiquitous Internet of Things (IoT), and Deep Learning (DL) techniques. This portends a future where 6G powers the Internet of Medical Things (IoMT) with seamless, large-scale, and real-time connectivity amongst entities. This article proposes a Convolutional Neural Network (CNN) based Federated Learning framework that combines Secure Multi-Party Computation (SMPC) based aggregation and Encrypted Inference methods, all within the context of 6G and IoMT. We consider multiple hospitals with clusters of mixed IoMT and edge devices that encrypt locally trained models. Subsequently, each hospital sends the encrypted local models for SMPC-based encrypted aggregation in the cloud, which generates the encrypted global model. Ultimately, the encrypted global model is returned to each edge server for more localized training, further improving model accuracy. Moreover, hospitals can perform encrypted inference on their edge servers or the cloud while maintaining data and model privacy. Multiple experiments were conducted with varying CNN models and datasets to evaluate the proposed framework's performance

    Unified representation of monitoring information across federated cloud infrastructures

    Get PDF
    Nowadays one of the issues hindering the potential of federating cloud-based infrastructures to reach much larger scales is their standard management and monitoring. In particular, this is true in cases where these federated infrastructures provide emerging Future Internet and Smart Cities-oriented services, such as the Internet of Things (IoT), that benefit from cloud services. The contribution of this paper is the introduction of a unified monitoring architecture for federated cloud infrastructures accompanied by the adoption of a uniform representation of measurement data. The presented solution is capable of providing multi-domain compatibility, scalability, as well as the ability to analyze large amounts of monitoring data, collected from datacenters and offered through open and standardized APIs. The solution described herein has been deployed and is currently running on a community of 5 infrastructures within the framework of the European Project XIFI, to be extended to 12 more infrastructures

    Quality management of surveillance multimedia streams via federated SDN controllers in Fiwi-iot integrated deployment environments

    Get PDF
    Traditionally, hybrid optical-wireless networks (Fiber-Wireless - FiWi domain) and last-mile Internet of Things edge networks (Edge IoT domain) have been considered independently, with no synergic management solutions. On the one hand, FiWi has primarily focused on high-bandwidth and low-latency access to cellular-equipped nodes. On the other hand, Edge IoT has mainly aimed at effective dispatching of sensor/actuator data among (possibly opportunistic) nodes, by using direct peer-to-peer and base station (BS)-assisted Internet communications. The paper originally proposes a model and an architecture that loosely federate FiWi and Edge IoT domains based on the interaction of FiWi and Edge IoT software defined networking controllers: The primary idea is that our federated controllers can seldom exchange monitoring data and control hints the one with the other, thus mutually enhancing their capability of end-to-end quality-aware packet management. To show the applicability and the effectiveness of the approach, our original proposal is applied to the notable example of multimedia stream provisioning from surveillance cameras deployed in the Edge IoT domain to both an infrastructure-side server and spontaneously interconnected mobile smartphones; our solution is able to tune the BS behavior of the FiWi domain and to reroute/prioritize traffic in the Edge IoT domain, with the final goal to reduce latency. In addition, the reported application case shows the capability of our solution of joint and coordinated exploitation of resources in FiWi and Edge IoT domains, with performance results that highlight its benefits in terms of efficiency and responsiveness

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    A Federated Architecture for Heuristics Packet Filtering in Cloud Networks

    Get PDF
    The rapid expansion in networking has provided tremendous opportunities to access an unparalleled amount of information. Everyone connects to a network to gain access and to share this information. However when someone connects to a public network, his private network and information becomes vulnerable to hackers and all kinds of security threats. Today, all networks needs to be secured, and one of the best security policies is firewall implementation. Firewalls can be hardware or cloud based. Hardware based firewalls offer the advantage of faster response time, whereas cloud based firewalls are more flexible. In reality the best form of firewall protection is the combination of both hardware and cloud firewall. In this thesis, we implemented and configured a federated architecture using both firewalls, the Cisco ASA 5510 and Vyatta VC6.6 Cloud Based Firewall. Performance evaluation of both firewalls were conducted and analyzed based on two scenarios; spike and endurance test. Throughputs were also compared, along with some mathematical calculations using statistics. Different forms of packets were sent using a specialized tool designed for load testing known as JMeter. After collecting the results and analyzing it thoroughly, this thesis is concluded by presenting a heuristics method on how packet filtering would fall back to the cloud based firewall when the hardware based firewall becomes stressed and over loaded, thus allowing efficient packet flow and optimized performance. The result of this thesis can be used by Information Security Analyst, students, organizations and IT experts to have an idea on how to implement a secured network architecture to protect digital information
    corecore