201,147 research outputs found

    A feature-similarity model for product line engineering

    Get PDF

    Enhancing similarity distances using mandatory and optional forearly fault detection

    Get PDF
    Software Product Line (SPL) describes procedures, techniques, and tools in software engineering by using a common method of production for producing a group of software systems that identical from a shared set of software assets. In SPL, the similarity-based prioritization can resemble combinatorial interaction testing in scalable and efficient way by choosing and prioritize configurations that most dissimilar. However, the similarity distances in SPL still not so much cover the basic detail of feature models which are the notations. Plus, the configurations always have been prioritized based on domain knowledge but not much attention has been paid to feature model notations. In this paper, we proposed the usage of mandatory and optional notations for similarity distances. The objective is to improve the average percentage of faults detected (APFD). We investigate four different distances and make modifications on the distances to increase APFD value. These modifications are the inclusion of mandatory and optional notations with the similarity distances. The results are the APFD values for all the similarity distances including the original and modified similarity distances. Overall, the results shown that by subtracting the optional notation value can increase the APFD by 3.71% from the original similarity distance

    Using similarity metrics for mining variability from software repositories

    Get PDF

    Selection of Software Product Line Implementation Components Using Recommender Systems: An Application to Wordpress

    Get PDF
    In software products line (SPL), there may be features which can be implemented by different components, which means there are several implementations for the same feature. In this context, the selection of the best components set to implement a given configuration is a challenging task due to the high number of combinations and options which could be selected. In certain scenarios, it is possible to find information associated with the components which could help in this selection task, such as user ratings. In this paper, we introduce a component-based recommender system, called (REcommender System that suggests implementation Components from selecteD fEatures), which uses information associated with the implementation components to make recommendations in the domain of the SPL configuration. We also provide a RESDEC reference implementation that supports collaborative-based and content-based filtering algorithms to recommend (i.e., implementation components) regarding WordPress-based websites configuration. The empirical results, on a knowledge base with 680 plugins and 187 000 ratings by 116 000 users, show promising results. Concretely, this indicates that it is possible to guide the user throughout the implementation components selection with a margin of error smaller than 13% according to our evaluation.Ministerio de Economía y Competitividad RTI2018-101204-B-C22Ministerio de Economía y Competitividad TIN2014-55894-C2-1-RMinisterio de Economía y Competitividad TIN2017-88209-C2-2-RMinisterio de Economía, Industria y Competitividad MCIU-AEI TIN2017-90644-RED

    A Systematic Review of Tracing Solutions in Software Product Lines

    Get PDF
    Software Product Lines are large-scale, multi-unit systems that enable massive, customized production. They consist of a base of reusable artifacts and points of variation that provide the system with flexibility, allowing generating customized products. However, maintaining a system with such complexity and flexibility could be error prone and time consuming. Indeed, any modification (addition, deletion or update) at the level of a product or an artifact would impact other elements. It would therefore be interesting to adopt an efficient and organized traceability solution to maintain the Software Product Line. Still, traceability is not systematically implemented. It is usually set up for specific constraints (e.g. certification requirements), but abandoned in other situations. In order to draw a picture of the actual conditions of traceability solutions in Software Product Lines context, we decided to address a literature review. This review as well as its findings is detailed in the present article.Comment: 22 pages, 9 figures, 7 table
    corecore