52 research outputs found

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    A review on copy-move image forgery detection techniques

    Get PDF
    With billions of digital images flooding the internet which are widely used and regards as the major information source in many fields in recent years. With the high advance of technology, it may seem easy to fraud the image. In digital images, copy-move forgery is the most common image tampering, where some object(s) or region(s) duplicate in the digital image. The important research has attracted more attention in digital forensic is forgery detection and localization. Many techniques have been proposed and many papers have been published to detect image forgery. This paper introduced a review of research papers on copy-move image forgery published in reputed journals from 2017 to 2020 and focused on discussing various strategies related with fraud images to highlight on the latest tools used in the detection. This article will help the researchers to understand the current algorithms and techniques in this field and ultimately develop new and more efficient algorithms of detection copy-move image

    Image forgery detection using textural features and deep learning

    Full text link
    La croissance exponentielle et les progrès de la technologie ont rendu très pratique le partage de données visuelles, d'images et de données vidéo par le biais d’une vaste prépondérance de platesformes disponibles. Avec le développement rapide des technologies Internet et multimédia, l’efficacité de la gestion et du stockage, la rapidité de transmission et de partage, l'analyse en temps réel et le traitement des ressources multimédias numériques sont progressivement devenus un élément indispensable du travail et de la vie de nombreuses personnes. Sans aucun doute, une telle croissance technologique a rendu le forgeage de données visuelles relativement facile et réaliste sans laisser de traces évidentes. L'abus de ces données falsifiées peut tromper le public et répandre la désinformation parmi les masses. Compte tenu des faits mentionnés ci-dessus, la criminalistique des images doit être utilisée pour authentifier et maintenir l'intégrité des données visuelles. Pour cela, nous proposons une technique de détection passive de falsification d'images basée sur les incohérences de texture et de bruit introduites dans une image du fait de l'opération de falsification. De plus, le réseau de détection de falsification d'images (IFD-Net) proposé utilise une architecture basée sur un réseau de neurones à convolution (CNN) pour classer les images comme falsifiées ou vierges. Les motifs résiduels de texture et de bruit sont extraits des images à l'aide du motif binaire local (LBP) et du modèle Noiseprint. Les images classées comme forgées sont ensuite utilisées pour mener des expériences afin d'analyser les difficultés de localisation des pièces forgées dans ces images à l'aide de différents modèles de segmentation d'apprentissage en profondeur. Les résultats expérimentaux montrent que l'IFD-Net fonctionne comme les autres méthodes de détection de falsification d'images sur l'ensemble de données CASIA v2.0. Les résultats discutent également des raisons des difficultés de segmentation des régions forgées dans les images du jeu de données CASIA v2.0.The exponential growth and advancement of technology have made it quite convenient for people to share visual data, imagery, and video data through a vast preponderance of available platforms. With the rapid development of Internet and multimedia technologies, performing efficient storage and management, fast transmission and sharing, real-time analysis, and processing of digital media resources has gradually become an indispensable part of many people’s work and life. Undoubtedly such technological growth has made forging visual data relatively easy and realistic without leaving any obvious visual clues. Abuse of such tampered data can deceive the public and spread misinformation amongst the masses. Considering the facts mentioned above, image forensics must be used to authenticate and maintain the integrity of visual data. For this purpose, we propose a passive image forgery detection technique based on textural and noise inconsistencies introduced in an image because of the tampering operation. Moreover, the proposed Image Forgery Detection Network (IFD-Net) uses a Convolution Neural Network (CNN) based architecture to classify the images as forged or pristine. The textural and noise residual patterns are extracted from the images using Local Binary Pattern (LBP) and the Noiseprint model. The images classified as forged are then utilized to conduct experiments to analyze the difficulties in localizing the forged parts in these images using different deep learning segmentation models. Experimental results show that both the IFD-Net perform like other image forgery detection methods on the CASIA v2.0 dataset. The results also discuss the reasons behind the difficulties in segmenting the forged regions in the images of the CASIA v2.0 dataset

    Integration of biometrics and steganography: A comprehensive review

    Get PDF
    The use of an individual’s biometric characteristics to advance authentication and verification technology beyond the current dependence on passwords has been the subject of extensive research for some time. Since such physical characteristics cannot be hidden from the public eye, the security of digitised biometric data becomes paramount to avoid the risk of substitution or replay attacks. Biometric systems have readily embraced cryptography to encrypt the data extracted from the scanning of anatomical features. Significant amounts of research have also gone into the integration of biometrics with steganography to add a layer to the defence-in-depth security model, and this has the potential to augment both access control parameters and the secure transmission of sensitive biometric data. However, despite these efforts, the amalgamation of biometric and steganographic methods has failed to transition from the research lab into real-world applications. In light of this review of both academic and industry literature, we suggest that future research should focus on identifying an acceptable level steganographic embedding for biometric applications, securing exchange of steganography keys, identifying and address legal implications, and developing industry standards

    A robust video watermarking using simulated block based spatial domain technique

    Get PDF
    A digital watermark embeds an imperceptible signal into data such as audio, video and images, for different purposes including authentication and tamper detection. Tamper detection techniques for video watermarking play a major role of forensic evidence in court. The existing techniques for concealing information in the multimedia host are mostly based on spatial domain rather than frequency domain. The spatial domain techniques are not as robust as frequency domain techniques. In order to improve the robustness of spatial domain, a watermark can be embedded several times repeatedly. In order for spatial domain techniques to be more efficient, more payload is needed to embed additional information. The additional information would include the redundant watermarks to ensure the achievable robustness and more metadata of pixels to ensure achievable efficiency to detect more attacks. All these required additional information will degrade the imperceptibility. This research focuses on video watermarking, particularly with respect to Audio Video Interleaved (AVI) form of video file format. The block-wise method is used to determine which block exactly altered. A high imperceptible and efficient tamper detection watermarking technique is proposed which embeds in first and second Least Significant Bits (LSB). The proposed technique divides the video stream to 2*2 nonoverlapping simulated blocks. Nine common attacks to video have been applied to the proposed technique. An imperceptible and efficient tamper detection technique with a novel method of video segmentation to comprise more pixels watermarked is proposed. Experimental results show the technique is able to detect the attacks with the average of Peak Signal-to-Noise Ratio (PSNR) as 47.87dB. The results illustrate the proposed technique improves imperceptibility and efficiency of tamper detection

    Enhanced Block-Based Copy-Move Image Forgery Detection Using K-Means Clustering Technique

    Get PDF
    In this thesis, the effect of feature type and matching method has been analyzed by comparing different combinations of matching method – feature type for copy-move image forgery detection. The results showed an interaction between some of the features and some of the matching methods. Due to the importance of matching process, this thesis focused on improving the matching process by proposing an enhanced block-based copy-move forgery detection pipeline. The proposed pipeline relied on clustering the image blocks into clusters, and then independently performing the matching of the blocks within each cluster which will reduce the time required for matching and increase the true positive ratio (TPR) as well. In order to deploy the proposed pipeline, two combinations of matching method - feature type are considered. In the first case, Zernike Moments (ZMs) were combined with Locality Sensitive Hashing (LSH) and tested on three datasets. The experimental results showed that the proposed pipeline reduced the processing time by 73.05% to 84.70% and enhanced the accuracy of detection by 5.56% to 25.43%. In the second case, Polar Cosine Transform (PCT) was combined with Lexicographical Sort (LS). Although the proposed pipeline could not reduce the processing time, it enhanced the accuracy of detection by 32.46%. The obtained results were statistically analyzed, and it was proven that the proposed pipeline can enhance the accuracy of detection significantly based on the comparison with other two methods

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method
    corecore