1,940 research outputs found

    Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach

    Get PDF
    Cardiac diseases are one of the greatest global health challenges. Due to the high annual mortality rates, cardiac diseases have attracted the attention of numerous researchers in recent years. This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms. An ensemble of classifiers is then applied to the fusion’s results. The proposed model classifies the arrhythmia dataset from the University of California, Irvine into normal/abnormal classes as well as 16 classes of arrhythmia. Initially, at the preprocessing steps, for the miss-valued attributes, we used the average value in the linear attributes group by the same class and the most frequent value for nominal attributes. However, in order to ensure the model optimality, we eliminated all attributes which have zero or constant values that might bias the results of utilized classifiers. The preprocessing step led to 161 out of 279 attributes (features). Thereafter, a fuzzy-based feature-selection fusion method is applied to fuse high-ranked features obtained from different heuristic feature-selection algorithms. In short, our study comprises three main blocks: (1) sensing data and preprocessing; (2) feature queuing, selection, and extraction; and (3) the predictive model. Our proposed method improves classification performance in terms of accuracy, F1 measure, recall, and precision when compared to state-of-the-art techniques. It achieves 98.5% accuracy for binary class mode and 98.9% accuracy for categorized class mode

    A framework for cardiac arrhythmia detection from IoT-based ECGs

    Get PDF
    Cardiac arrhythmia has been identified as a type of cardiovascular diseases (CVDs) that causes approximately 12% of all deaths globally. The development of Internet-of-Things has spawned novel ways for heart monitoring but also presented new challenges for manual arrhythmia detection. An automated method is highly demanded to provide support for physicians. Current attempts for automatic arrhythmia detection can roughly be divided as feature-engineering based and deep-learning based methods. Most of the feature-engineering based methods are suffering from adopting single classifier and use fixed features for classifying all five types of heartbeats. This introduces difficulties in identification of the problematic heartbeats and limits the overall classification performance. The deep-learning based methods are usually not evaluated in a realistic manner and report overoptimistic results which may hide potential limitations of the models. Moreover, the lack of consideration of frequency patterns and the heart rhythms can also limit the model performance. To fill in the gaps, we propose a framework for arrhythmia detection from IoT-based ECGs. The framework consists of two modules: a data cleaning module and a heartbeat classification module. Specifically, we propose two solutions for the heartbeat classification task, namely Dynamic Heartbeat Classification with Adjusted Features (DHCAF) and Multi-channel Heartbeat Convolution Neural Network (MCHCNN). DHCAF is a feature-engineering based approach, in which we introduce dynamic ensemble selection (DES) technique and develop a result regulator to improve classification performance. MCHCNN is deep-learning based solution that performs multi-channel convolutions to capture both temporal and frequency patterns from heartbeat to assist the classification. We evaluate the proposed framework with DHCAF and with MCHCNN on the well-known MIT-BIH-AR database, respectively. The results reported in this paper have proven the effectiveness of our framework

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Weighted Heuristic Ensemble of Filters

    Get PDF
    Feature selection has become increasingly important in data mining in recent years due to the rapid increase in the dimensionality of big data. However, the reliability and consistency of feature selection methods (filters) vary considerably on different data and no single filter performs consistently well under various conditions. Therefore, feature selection ensemble has been investigated recently to provide more reliable and effective results than any individual one but all the existing feature selection ensemble treat the feature selection methods equally regardless of their performance. In this paper, we present a novel framework which applies weighted feature selection ensemble through proposing a systemic way of adding different weights to the feature selection methods-filters. Also, we investigate how to determine the appropriate weight for each filter in an ensemble. Experiments based on ten benchmark datasets show that theoretically and intuitively adding more weight to ‘good filters’ should lead to better results but in reality it is very uncertain. This assumption was found to be correct for some examples in our experiment. However, for other situations, filters which had been assumed to perform well showed bad performance leading to even worse results. Therefore adding weight to filters might not achieve much in accuracy terms, in addition to increasing complexity, time consumption and clearly decreasing the stability

    ECG Arrhythmia Classification Using Transfer Learning from 2-Dimensional Deep CNN Features

    Full text link
    Due to the recent advances in the area of deep learning, it has been demonstrated that a deep neural network, trained on a huge amount of data, can recognize cardiac arrhythmias better than cardiologists. Moreover, traditionally feature extraction was considered an integral part of ECG pattern recognition; however, recent findings have shown that deep neural networks can carry out the task of feature extraction directly from the data itself. In order to use deep neural networks for their accuracy and feature extraction, high volume of training data is required, which in the case of independent studies is not pragmatic. To arise to this challenge, in this work, the identification and classification of four ECG patterns are studied from a transfer learning perspective, transferring knowledge learned from the image classification domain to the ECG signal classification domain. It is demonstrated that feature maps learned in a deep neural network trained on great amounts of generic input images can be used as general descriptors for the ECG signal spectrograms and result in features that enable classification of arrhythmias. Overall, an accuracy of 97.23 percent is achieved in classifying near 7000 instances by ten-fold cross validation.Comment: Accepted and presented for IEEE Biomedical Circuits and Systems (BioCAS) on 17th-19th October 2018 in Ohio, US
    • …
    corecore