530 research outputs found

    A Feasibility Check for Geographical Cluster Based Routing under Inaccurate Node Localization in Wireless Sensor Networks

    Get PDF
    Localized geographic single path routing along a wireless network graph requires exact location information about the network nodes to assure message delivery guarantees. Node localization in practice however is not exact. Errors ranging from several centimeters up to several meters are usual. How to perform localized routing in practice when such errors are prevalent? In this work we look at a promising routing variant which does not completely overcome this practical problem but which mitigates it. The concept does away with trying to find node positions as precise as possible but allows inaccuracies from the very beginning. It partitions the plane by a regular mesh of hexagons. The only information which is of interest is in which cell of that partitioning a node is located in. Using this node embedding, a virtual geographic overlay graph can then be constructed. To find the node positions we apply three variants of multidimensional scaling, two of them being a node localization approach which has been well studied in the context of sensor networks and one which we apply here for the first time in that context. Using the location information we get from these localization approaches we embed the nodes into the clusters their location falls into. We define two graph metrics to assess the quality of the overlay graph obtained by the embedding. Applying these two metrics in a simulation study, we show that cluster based routing is an eligible approach to support localized geographic routing when location errors are prevalent

    Proceedings Work-In-Progress Session of the 13th Real-Time and Embedded Technology and Applications Symposium

    Get PDF
    The Work-In-Progress session of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS\u2707) presents papers describing contributions both to state of the art and state of the practice in the broad field of real-time and embedded systems. The 17 accepted papers were selected from 19 submissions. This proceedings is also available as Washington University in St. Louis Technical Report WUCSE-2007-17, at http://www.cse.seas.wustl.edu/Research/FileDownload.asp?733. Special thanks go to the General Chairs – Steve Goddard and Steve Liu and Program Chairs - Scott Brandt and Frank Mueller for their support and guidance

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Virtual and topological coordinate based routing, mobility tracking and prediction in 2D and 3D wireless sensor networks

    Get PDF
    2013 Fall.Includes bibliographical references.A Virtual Coordinate System (VCS) for Wireless Sensor Networks (WSNs) characterizes each sensor node's location using the minimum number of hops to a specific set of sensor nodes called anchors. VCS does not require geographic localization hardware such as Global Positioning System (GPS), or localization algorithms based on Received Signal Strength Indication (RSSI) measurements. Topological Coordinates (TCs) are derived from Virtual Coordinates (VCs) of networks using Singular Value Decomposition (SVD). Topology Preserving Maps (TPMs) based on TCs contain 2D or 3D network topology and directional information that are lost in VCs. This thesis extends the scope of VC and TC based techniques to 3D sensor networks and networks with mobile nodes. Specifically, we apply existing Extreme Node Search (ENS) for anchor placement for 3D WSNs. 3D Geo-Logical Routing (3D-GLR), a routing algorithm for 3D sensor networks that alternates between VC and TC domains is evaluated. VC and TC based methods have hitherto been used only in static networks. We develop methods to use VCs in mobile networks, including the generation of coordinates, for mobile sensors without having to regenerate VCs every time the topology changes. 2D and 3D Topological Coordinate based Tracking and Prediction (2D-TCTP and 3D-TCTP) are novel algorithms developed for mobility tracking and prediction in sensor networks without the need of physical distance measurements. Most existing 2D sensor networking algorithms fail or perform poorly in 3D networks. Developing VC and TC based algorithms for 3D sensor networks is crucial to benefit from the scalability, adjustability and flexibility of VCs as well as to overcome the many disadvantages associated with geographic coordinate systems. Existing ENS algorithm for 2D sensor networks plays a key role in providing a good anchor placement and we continue to use ENS algorithm for anchor selection in 3D network. Additionally, we propose a comparison algorithm for ENS algorithm named Double-ENS algorithm which uses two independent pairs of initial anchors and thereby increases the coverage of ENS anchors in 3D networks, in order to further prove if anchor selection from original ENS algorithm is already optimal. Existing Geo-Logical Routing (GLR) algorithm demonstrates very good routing performance by switching between greedy forwarding in virtual and topological domains in 2D sensor networks. Proposed 3D-GLR extends the algorithm to 3D networks by replacing 2D TCs with 3D TCs in TC distance calculation. Simulation results show that the 3D-GLR algorithm with ENS anchor placement can significantly outperform current Geographic Coordinates (GCs) based 3D Greedy Distributed Spanning Tree Routing (3D-GDSTR) algorithm in various network environments. This demonstrates the effectiveness of ENS algorithm and 3D-GLR algorithm in 3D sensor networks. Tracking and communicating with mobile sensors has so far required the use of localization or geographic information. This thesis presents a novel approach to achieve tracking and communication without geographic information, thus significantly reducing the hardware cost and energy consumption. Mobility of sensors in WSNs is considered under two scenarios: dynamic deployment and continuous movement. An efficient VC generation scheme, which uses the average of neighboring sensors' VCs, is proposed for newly deployed sensors to get coordinates without flooding based VC generation. For the second scenario, a prediction and tracking algorithm called 2D-TCTP for continuously moving sensors is developed for 2D sensor networks. Predicted location of a mobile sensor at a future time is calculated based on current sampled velocity and direction in topological domain. The set of sensors inside an ellipse-shaped detection area around the predicted future location is alerted for the arrival of mobile sensor for communication or detection purposes. Using TPMs as a 2D guide map, tracking and prediction performances can be achieved similar to those based on GCs. A simple modification for TPMs generation is proposed, which considers radial information contained in the first principle component from SVD. This modification improves the compression or folding at the edges that has been observed in TPMs, and thus the accuracy of tracking. 3D-TCTP uses a detection area in the shape of a 3D sphere. 3D-TCTP simulation results are similar to 2D-TCTP and show competence comparable to the same algorithms based on GCs although without any 3D geographic information

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Performance evaluation of a prototyped wireless ground sensor networks

    Get PDF
    This thesis investigated the suitability of wireless, unattended ground sensor networks for military applications. The unattended aspect requires the network to self-organize and adapt to dynamic changes. A wireless, unattended ground sensor network was prototyped using commercial off-the-shelf technology and three to four networked nodes. Device and network performance were measured under indoor and outdoor scenarios. The measured communication range of a node varied between three and nineteen meters depending on the scenario. The sensors evaluated were an acoustic sensor, a magnetic sensor, and an acceleration sensor. The measured sensing range varied by the type of sensor. Node discovery durations observed were between forty seconds and over five minutes. Node density calculations indicated that the prototype was scalable to five hundred nodes. This thesis substantiated the feasibility of interconnecting, self-organizing sensor nodes in military applications. Tests and evaluations demonstrated that the network was capable of dynamic adaptation to failure and degradation.http://archive.org/details/performanceevalu109452263Approved for public release; distribution is unlimited
    • …
    corecore