504 research outputs found

    Stochastic DES Fault Diagnosis with Coloured Interpreted Petri Nets

    Get PDF
    [EN] This proposal presents an online method to detect and isolate faults in stochastic discrete event systems without previous model. A coloured timed interpreted Petri Net generates the normal behavior language after an identification stage.The next step is fault detection that is carried out by comparing the observed event sequences with the expected event sequences. Once a new fault is detected, a learning algorithm changes the structure of the diagnoser, so it is able to learn new fault languages. Moreover, the diagnoser includes timed events to represent and diagnose stochastic languages. Finally, this paper proposes a detectability condition for stochastic DES and the sufficient and necessary conditions are proved.This work was supported by a grant from the Universidad del Cauca, Reference 2.3-31.2/05 2011.Muñoz-Añasco, DM.; Correcher Salvador, A.; García Moreno, E.; Morant Anglada, FJ. (2015). Stochastic DES Fault Diagnosis with Coloured Interpreted Petri Nets. Mathematical Problems in Engineering. 2015:1-13. https://doi.org/10.1155/2015/303107S1132015Jiang, S., & Kumar, R. (2004). Failure Diagnosis of Discrete-Event Systems With Linear-Time Temporal Logic Specifications. IEEE Transactions on Automatic Control, 49(6), 934-945. doi:10.1109/tac.2004.829616Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis methods for Discrete Event Systems. Annual Reviews in Control, 37(2), 308-320. doi:10.1016/j.arcontrol.2013.09.009Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1995). Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control, 40(9), 1555-1575. doi:10.1109/9.412626Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. C. (1996). Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology, 4(2), 105-124. doi:10.1109/87.486338Estrada-Vargas, A. P., López-Mellado, E., & Lesage, J.-J. (2010). A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems. Mathematical Problems in Engineering, 2010, 1-21. doi:10.1155/2010/453254Cabasino, M. P., Giua, A., & Seatzu, C. (2010). Fault detection for discrete event systems using Petri nets with unobservable transitions. Automatica, 46(9), 1531-1539. doi:10.1016/j.automatica.2010.06.013Prock, J. (1991). A new technique for fault detection using Petri nets. Automatica, 27(2), 239-245. doi:10.1016/0005-1098(91)90074-cAghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., & Jard, C. (1998). Discrete Event Dynamic Systems, 8(2), 203-231. doi:10.1023/a:1008241818642Hadjicostis, C. N., & Verghese, G. C. (1999). Monitoring Discrete Event Systems Using Petri Net Embeddings. Application and Theory of Petri Nets 1999, 188-207. doi:10.1007/3-540-48745-x_12Benveniste, A., Fabre, E., Haar, S., & Jard, C. (2003). Diagnosis of asynchronous discrete-event systems: a net unfolding approach. IEEE Transactions on Automatic Control, 48(5), 714-727. doi:10.1109/tac.2003.811249Genc, S., & Lafortune, S. (2003). Distributed Diagnosis of Discrete-Event Systems Using Petri Nets. Lecture Notes in Computer Science, 316-336. doi:10.1007/3-540-44919-1_21Genc, S., & Lafortune, S. (2007). Distributed Diagnosis of Place-Bordered Petri Nets. IEEE Transactions on Automation Science and Engineering, 4(2), 206-219. doi:10.1109/tase.2006.879916Ramirez-Trevino, A., Ruiz-Beltran, E., Rivera-Rangel, I., & Lopez-Mellado, E. (2007). Online Fault Diagnosis of Discrete Event Systems. A Petri Net-Based Approach. IEEE Transactions on Automation Science and Engineering, 4(1), 31-39. doi:10.1109/tase.2006.872120Dotoli, M., Fanti, M. P., Mangini, A. M., & Ukovich, W. (2009). On-line fault detection in discrete event systems by Petri nets and integer linear programming. Automatica, 45(11), 2665-2672. doi:10.1016/j.automatica.2009.07.021Fanti, M. P., Mangini, A. M., & Ukovich, W. (2013). Fault Detection by Labeled Petri Nets in Centralized and Distributed Approaches. IEEE Transactions on Automation Science and Engineering, 10(2), 392-404. doi:10.1109/tase.2012.2203596Basile, F., Chiacchio, P., & De Tommasi, G. (2009). An Efficient Approach for Online Diagnosis of Discrete Event Systems. IEEE Transactions on Automatic Control, 54(4), 748-759. doi:10.1109/tac.2009.2014932Roth, M., Lesage, J.-J., & Litz, L. (2011). The concept of residuals for fault localization in discrete event systems. Control Engineering Practice, 19(9), 978-988. doi:10.1016/j.conengprac.2011.02.008Roth, M., Schneider, S., Lesage, J.-J., & Litz, L. (2012). Fault detection and isolation in manufacturing systems with an identified discrete event model. International Journal of Systems Science, 43(10), 1826-1841. doi:10.1080/00207721.2011.649369Chung-Hsien Kuo, & Han-Pang Huang. (2000). Failure modeling and process monitoring for flexible manufacturing systems using colored timed Petri nets. IEEE Transactions on Robotics and Automation, 16(3), 301-312. doi:10.1109/70.850648Ramirez-Trevino, A., Ruiz-Beltran, E., Aramburo-Lizarraga, J., & Lopez-Mellado, E. (2012). Structural Diagnosability of DES and Design of Reduced Petri Net Diagnosers. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 42(2), 416-429. doi:10.1109/tsmca.2011.2169950Cabasino, M. P., Giua, A., & Seatzu, C. (2014). Diagnosability of Discrete-Event Systems Using Labeled Petri Nets. IEEE Transactions on Automation Science and Engineering, 11(1), 144-153. doi:10.1109/tase.2013.2289360Yao, L., Feng, L., & Jiang, B. (2014). Fault Diagnosis and Fault Tolerant Control for Non-Gaussian Singular Time-Delayed Stochastic Distribution Systems. Mathematical Problems in Engineering, 2014, 1-9. doi:10.1155/2014/937583Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Dotoli, M., Fanti, M. P., & Mangini, A. M. (2008). Real time identification of discrete event systems using Petri nets. Automatica, 44(5), 1209-1219. doi:10.1016/j.automatica.2007.10.014Muñoz, D. M., Correcher, A., García, E., & Morant, F. (2014). Identification of Stochastic Timed Discrete Event Systems with st-IPN. Mathematical Problems in Engineering, 2014, 1-21. doi:10.1155/2014/835312Latorre-Biel, J.-I., Jiménez-Macías, E., Pérez de la Parte, M., Blanco-Fernåndez, J., & Martínez-Cåmara, E. (2014). Control of Discrete Event Systems by Means of Discrete Optimization and Disjunctive Colored PNs: Application to Manufacturing Facilities. Abstract and Applied Analysis, 2014, 1-16. doi:10.1155/2014/821707Cabasino, M. P., Giua, A., Lafortune, S., & Seatzu, C. (2012). A New Approach for Diagnosability Analysis of Petri Nets Using Verifier Nets. IEEE Transactions on Automatic Control, 57(12), 3104-3117. doi:10.1109/tac.2012.2200372Abdelwahed, S., Karsai, G., Mahadevan, N., & Ofsthun, S. C. (2009). Practical Implementation of Diagnosis Systems Using Timed Failure Propagation Graph Models. IEEE Transactions on Instrumentation and Measurement, 58(2), 240-247. doi:10.1109/tim.2008.200595

    Petri nets: 2. Applications

    Get PDF
    Petri nets offer a versatile modeling framework for complex, distributed, concurrent systems and have been used in a wide range of modeling applications. In Part 1 of this two-part article, we have seen important features and representational power of the Petri net model. We have also seen how the application of firing rules enables Petri nets to capture the dynamics or behavior of the modeled system. In this part, we will first understand how important system properties are modeled by Petri nets and then look into the applications of Petri net models

    Process Mining of Programmable Logic Controllers: Input/Output Event Logs

    Full text link
    This paper presents an approach to model an unknown Ladder Logic based Programmable Logic Controller (PLC) program consisting of Boolean logic and counters using Process Mining techniques. First, we tap the inputs and outputs of a PLC to create a data flow log. Second, we propose a method to translate the obtained data flow log to an event log suitable for Process Mining. In a third step, we propose a hybrid Petri net (PN) and neural network approach to approximate the logic of the actual underlying PLC program. We demonstrate the applicability of our proposed approach on a case study with three simulated scenarios

    Intersection Collision Avoidance For Autonomous Vehicles Using Petri Nets

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Autonomous vehicles currently dominate the automobile ïŹeld for their impact on humanity and society. Connected and Automated Vehicles (CAV’s) are vehicles that use diïŹ€erent communication technologies to communicate with other vehicles, infrastructure, the cloud, etc. With the information received from the sensors present, the vehicles analyze and take necessary steps for smooth, collision-free driving. This the sis talks about the cruise control system along with the intersection collision avoidance system based on Petri net models. It consists of two internal controllers for velocity and distance control, respectively, and three external ones for collision avoidance. Fault-tolerant redundant controllers are designed to keep these three controllers in check. The model is built using a PN toolbox and tested for various scenarios. The model is also validated, and its distinct properties are analyzed

    Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments: A review

    Get PDF
    YesSystem safety, reliability and risk analysis are important tasks that are performed throughout the system lifecycle to ensure the dependability of safety-critical systems. Probabilistic risk assessment (PRA) approaches are comprehensive, structured and logical methods widely used for this purpose. PRA approaches include, but not limited to, Fault Tree Analysis (FTA), Failure Mode and Effects Analysis (FMEA), and Event Tree Analysis (ETA). Growing complexity of modern systems and their capability of behaving dynamically make it challenging for classical PRA techniques to analyse such systems accurately. For a comprehensive and accurate analysis of complex systems, different characteristics such as functional dependencies among components, temporal behaviour of systems, multiple failure modes/states for components/systems, and uncertainty in system behaviour and failure data are needed to be considered. Unfortunately, classical approaches are not capable of accounting for these aspects. Bayesian networks (BNs) have gained popularity in risk assessment applications due to their flexible structure and capability of incorporating most of the above mentioned aspects during analysis. Furthermore, BNs have the ability to perform diagnostic analysis. Petri Nets are another formal graphical and mathematical tool capable of modelling and analysing dynamic behaviour of systems. They are also increasingly used for system safety, reliability and risk evaluation. This paper presents a review of the applications of Bayesian networks and Petri nets in system safety, reliability and risk assessments. The review highlights the potential usefulness of the BN and PN based approaches over other classical approaches, and relative strengths and weaknesses in different practical application scenarios.This work was funded by the DEIS H2020 project (Grant Agreement 732242)

    On the decidability of problems in liveness of controlled Discrete Event Systems modeled by Petri Nets

    Get PDF
    A Discrete Event System (DES) is a discrete-state system, where the state changes at discrete-time instants due to the occurrence of events. Informally, a liveness property stipulates that a 'good thing' happens during the evolution of a system. Some examples of liveness properties include starvation freedom -- where the 'good thing' is the process making progress; termination -- in which the good thing is for an evolution to not run forever; and guaranteed service -- such as in resource allocation systems, when every request for resource is satisfied eventually. In this thesis, we consider supervisory policies for DESs that, when they exist, enforce a liveness property by appropriately disabling a subset of preventable events at certain states in the evolution of DES. One of the main contributions of this thesis is the development of a system-theoretic framework for the analysis of Liveness Enforcing Supervisory Policies (LESPs) for DESs. We model uncertainties in the forward- and feedback-path, and present necessary and sufficient conditions for the existence of Liveness Enforcing Supervisory Policies (LESPs) for a general model of DESs in this framework. The existence of an LESP reduces to the membership of the initial state to an appropriately defined set. The membership problem is undecidable. For characterizing decidable instances of this membership problem, we consider a modeling paradigm of DESs known as Petri Nets, which have applications in modeling concurrent systems, software design, manufacturing systems, etc. Petri Net (PN) models are inherently monotonic in the sense that if a transition (which loosely represents an event of the DES) can fire from a marking (a non-negative integer-valued vector that represents the state of the DES being modeled), then it can also fire from any larger marking. The monotonicity creates a possibility of representing an infinite-state system using what can be called a "finite basis" that can lead to decidability. However, we prove that several problems of our interest are still undecidable for arbitrary PN models. That is, informally, a general PN model is still too powerful for the analysis that we are interested in. Much of the thesis is devoted to the characterization of decidable instances of the existence of LESPs for arbitrary PN models within the system-theoretic framework introduced in the thesis. The philosophical implication of the results in this thesis is the existence of what can be called a "finite basis" of an infinite state system under supervision, on which the membership tests can be performed in finite time; hence resulting in the decidability of problems and finite-time termination of algorithms. The thesis discusses various scenarios where such a finite basis exists and how to find them

    Modeling and analysis of semiconductor manufacturing processes using petri nets

    Get PDF
    This thesis addresses the issues in modeling and analysis of multichip module (MCM) manufacturing processes using Petri nets. Building such graphical and mathematical models is a crucial step to understand MCM technologies and to enhance their application scope. In this thesis, the application of Petri nets is presented with top-down and bottom-up approaches. The theory of Petri nets is summarized with its basic notations and properties at first. After that, the capability of calculating and analyzing Petri nets with deterministic timing information is extended to meet the requirements of the MCM models. Then, using top-down refining and system decomposition, MCM models are built from an abstract point to concrete systems with timing information. In this process, reduction theory based on a multiple-input-single-output modules for deterministic Petri nets is applied to analyze the cycle time of Petri net models. Besides, this thesis is of significance in its use of the reduction theory which is derived for timed marked graphs - an important class of Petri nets

    A Review of Building Information Modeling and Simulation as Virtual Representations Under the Digital Twin Concept

    Get PDF
    Building Information Modeling (BIM) is a highly promising technique for achieving digitalization in the construction industry, widely used in modern construction projects for digitally representing facilities. Nevertheless, retains limitations in terms of representing construction operations. The digital twin concept may potentially overcome these limitations and initiate advanced digital transformation in the construction industry as it has revolutionized the product lifecycle management in the manufacturing industry. This research provides a critical review of applying digital twin in the construction industry. Altogether, 140 papers from related journals and databases were reviewed. The digital aspect of twinning consists of BIM and simulation modeling. These two techniques have been used to create virtual or digital representations of actual buildings and real-world construction processes. However, integrating and applying BIM and simulation modeling according to the digital twin concept remains to be fully studied. Comprehensive evaluations of BIM, simulation modeling, and digital twin will provide a well-defined framework for this research, to identify direction and potential for digital twin in the construction industry, thereby progressing to the next level of digitalization and improvement in construction management practice

    Petri net approaches for modeling, controlling, and validating flexible manufacturing systems

    Get PDF
    In this dissertation, we introduce the fundamental ideas and constructs of Petri net models such as ordinary, timed, colored, stochastic, control, and neural, and present some studies that emphasize Petri nets theories and applications as extended research fields that provide suitable platforms in modeling, controlling, validating, and evaluating concurrent systems, information systems, and a versatile dynamic system and manufacturing systems;We then suggest some of extensions that help make Petri nets useful for modeling and analyzing discrete event systems and manufacturing systems models based on the context of a versatile manufacturing system, and applies extended Petri nets models to several manufacturing systems such as an assembly cell, an Automated Palletized Conveyor System, and a tooling machine to show increased modeling power and efficient analysis methods;Finally, Validation methods are presented for these models and results of a performance analysis from a deterministic and stochastic model are used to reorganize and re-evaluate a manufacturing system in order to increase its flexibility
    • 

    corecore