257 research outputs found

    Data-Driven and Hybrid Methods for Naval Applications

    Get PDF
    The goal of this PhD thesis is to study, design and develop data analysis methods for naval applications. Data analysis is improving our ways to understand complex phenomena by profitably taking advantage of the information laying behind a collection of data. In fact, by adopting algorithms coming from the world of statistics and machine learning it is possible to extract valuable information, without requiring specific domain knowledge of the system generating the data. The application of such methods to marine contexts opens new research scenarios, since typical naval problems can now be solved with higher accuracy rates with respect to more classical techniques, based on the physical equations governing the naval system. During this study, some major naval problems have been addressed adopting state-of-the-art and novel data analysis techniques: condition-based maintenance, consisting in assets monitoring, maintenance planning, and real-time anomaly detection; energy and consumption monitoring, in order to reduce vessel consumption and gas emissions; system safety for maneuvering control and collision avoidance; components design, in order to detect possible defects at design stage. A review of the state-of-the-art of data analysis and machine learning techniques together with the preliminary results of the application of such methods to the aforementioned problems show a growing interest in these research topics and that effective data-driven solutions can be applied to the naval context. Moreover, for some applications, data-driven models have been used in conjunction with domain-dependent methods, modelling physical phenomena, in order to exploit both mechanistic knowledge of the system and available measurements. These hybrid methods are proved to provide more accurate and interpretable results with respect to both the pure physical or data-driven approaches taken singularly, thus showing that in the naval context it is possible to offer new valuable methodologies by either providing novel statistical methods or improving the state-of-the-art ones

    Research and development of diagnostic algorithms to support fault accommodating control for emerging shipboard power system architectures

    Get PDF
    The U.S. Navy has proposed development of next generation warships utilising an increased amount of power electronics devices to improve flexibility and controllability. The high power density finite inertia network is envisioned to employ automated fault detection and diagnosis to aid timely remedial action. Integration of condition monitoring and fault diagnosis to form an intelligent power distribution system is anticipated to assist decision support for crew while enhancing security and mission availability. This broad research being in the conceptual stage has lack of benchmark systems to learn from. Thorough studies are required to successfully enable realising benefits offered by using increased power electronics and automation. Application of fundamental analysis techniques is necessary to meticulously understand dynamics of a novel system and familiarisation with associated risks and their effects. Additionally, it is vital to find ways of mitigating effects of identified risks. This thesis details the developing of a generalised methodology to help focus research into artificial intelligence (AI) based diagnostic techniques. Failure Mode and Effects Analysis (FMEA) is used in identifying critical parts of the architecture. Sneak Circuit Analysis (SCA) is modified to provide signals that differentiate faults at a component level of a dc-dc step down converter. These reliability analysis techniques combined with an appropriate AI-algorithm offer a potentially robust approach that can potentially be utilised for diagnosing faults within power electronic equipment anticipated to be used onboard the novel SPS. The proposed systematic methodology could be extended to other types of power electronic converters, as well as distinguishing subsystem level faults. The combination of FMEA, SCA with AI could also be used for providing enhanced decision support. This forms part of future research in this specific arena demonstrating the positives brought about by combining reliability analyses techniques with AI for next generation naval SPS.The U.S. Navy has proposed development of next generation warships utilising an increased amount of power electronics devices to improve flexibility and controllability. The high power density finite inertia network is envisioned to employ automated fault detection and diagnosis to aid timely remedial action. Integration of condition monitoring and fault diagnosis to form an intelligent power distribution system is anticipated to assist decision support for crew while enhancing security and mission availability. This broad research being in the conceptual stage has lack of benchmark systems to learn from. Thorough studies are required to successfully enable realising benefits offered by using increased power electronics and automation. Application of fundamental analysis techniques is necessary to meticulously understand dynamics of a novel system and familiarisation with associated risks and their effects. Additionally, it is vital to find ways of mitigating effects of identified risks. This thesis details the developing of a generalised methodology to help focus research into artificial intelligence (AI) based diagnostic techniques. Failure Mode and Effects Analysis (FMEA) is used in identifying critical parts of the architecture. Sneak Circuit Analysis (SCA) is modified to provide signals that differentiate faults at a component level of a dc-dc step down converter. These reliability analysis techniques combined with an appropriate AI-algorithm offer a potentially robust approach that can potentially be utilised for diagnosing faults within power electronic equipment anticipated to be used onboard the novel SPS. The proposed systematic methodology could be extended to other types of power electronic converters, as well as distinguishing subsystem level faults. The combination of FMEA, SCA with AI could also be used for providing enhanced decision support. This forms part of future research in this specific arena demonstrating the positives brought about by combining reliability analyses techniques with AI for next generation naval SPS

    Establishment of a novel predictive reliability assessment strategy for ship machinery

    Get PDF
    There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme.There is no doubt that recent years, maritime industry is moving forward to novel and sophisticated inspection and maintenance practices. Nowadays maintenance is encountered as an operational method, which can be employed both as a profit generating process and a cost reduction budget centre through an enhanced Operation and Maintenance (O&M) strategy. In the first place, a flexible framework to be applicable on complex system level of machinery can be introduced towards ship maintenance scheduling of systems, subsystems and components.;This holistic inspection and maintenance notion should be implemented by integrating different strategies, methodologies, technologies and tools, suitably selected by fulfilling the requirements of the selected ship systems. In this thesis, an innovative maintenance strategy for ship machinery is proposed, namely the Probabilistic Machinery Reliability Assessment (PMRA) strategy focusing towards the reliability and safety enhancement of main systems, subsystems and maintainable units and components.;In this respect, the combination of a data mining method (k-means), the manufacturer safety aspects, the dynamic state modelling (Markov Chains), the probabilistic predictive reliability assessment (Bayesian Belief Networks) and the qualitative decision making (Failure Modes and Effects Analysis) is employed encompassing the benefits of qualitative and quantitative reliability assessment. PMRA has been clearly demonstrated in two case studies applied on offshore platform oil and gas and selected ship machinery.;The results are used to identify the most unreliability systems, subsystems and components, while advising suitable practical inspection and maintenance activities. The proposed PMRA strategy is also tested in a flexible sensitivity analysis scheme

    Investigating ship system performance degradation and failure criticality using FMECA and artificial neural networks

    Get PDF
    The goal of all maintenance methods is to eliminate failures or reduce their occurrence. Ex-tended downtime on key ships systems such as power generation plants can lead to undesirable consequences beyond economic and operational losses, especially considering naval vessels. One solution to overcome this challenge is through a system-specific analysis that identifies the most critical component and possible causes of delays be it technical or logistics. In this regard, this paper presents a methodology using FMECA approach that adopts the risk priority number differently to identify Mission Critical Components. This was supported with ANN classification using unsupervised learning to identify patterns in the data that signifies the onset of performance degradation and potential failures onboard an OPV. The study has identified some critical components and failure patterns that contribute to extended downtime based on survey and machinery maintenance reports. Recommendations were provided on preventing/mitigating the failures and how to prioritize existing ship systems maintenance
    • …
    corecore