8,590 research outputs found

    Technology for Low Resolution Space Based RSO Detection and Characterisation

    Get PDF
    Space Situational Awareness (SSA) refers to all activities to detect, identify and track objects in Earth orbit. SSA is critical to all current and future space activities and protect space assets by providing access control, conjunction warnings, and monitoring status of active satellites. Currently SSA methods and infrastructure are not sufficient to account for the proliferations of space debris. In response to the need for better SSA there has been many different areas of research looking to improve SSA most of the requiring dedicated ground or space-based infrastructure. In this thesis, a novel approach for the characterisation of RSO’s (Resident Space Objects) from passive low-resolution space-based sensors is presented with all the background work performed to enable this novel method. Low resolution space-based sensors are common on current satellites, with many of these sensors being in space using them passively to detect RSO’s can greatly augment SSA with out expensive infrastructure or long lead times. One of the largest hurtles to overcome with research in the area has to do with the lack of publicly available labelled data to test and confirm results with. To overcome this hurtle a simulation software, ORBITALS, was created. To verify and validate the ORBITALS simulator it was compared with the Fast Auroral Imager images, which is one of the only publicly available low-resolution space-based images found with auxiliary data. During the development of the ORBITALS simulator it was found that the generation of these simulated images are computationally intensive when propagating the entire space catalog. To overcome this an upgrade of the currently used propagation method, Specialised General Perturbation Method 4th order (SGP4), was performed to allow the algorithm to run in parallel reducing the computational time required to propagate entire catalogs of RSO’s. From the results it was found that the standard facet model with a particle swarm optimisation performed the best estimating an RSO’s attitude with a 0.66 degree RMSE accuracy across a sequence, and ~1% MAPE accuracy for the optical properties. This accomplished this thesis goal of demonstrating the feasibility of low-resolution passive RSO characterisation from space-based platforms in a simulated environment

    Specificity of the innate immune responses to different classes of non-tuberculous mycobacteria

    Get PDF
    Mycobacterium avium is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a M. avium infection model in zebrafish larvae, and compared it to M. marinum infection, a model of tuberculosis. M. avium bacteria are efficiently phagocytosed and frequently induce granuloma-like structures in zebrafish larvae. Although macrophages can respond to both mycobacterial infections, their migration speed is faster in infections caused by M. marinum. Tlr2 is conservatively involved in most aspects of the defense against both mycobacterial infections. However, Tlr2 has a function in the migration speed of macrophages and neutrophils to infection sites with M. marinum that is not observed with M. avium. Using RNAseq analysis, we found a distinct transcriptome response in cytokine-cytokine receptor interaction for M. avium and M. marinum infection. In addition, we found differences in gene expression in metabolic pathways, phagosome formation, matrix remodeling, and apoptosis in response to these mycobacterial infections. In conclusion, we characterized a new M. avium infection model in zebrafish that can be further used in studying pathological mechanisms for NTM-caused diseases

    On Efficient Zero-Knowledge Arguments

    Get PDF

    Towards High-Accuracy Simulations of Strongly Correlated Materials Using Tensor Networks

    Get PDF
    Accurate and verifiable computation of the properties of real materials with strong electron correlation has been a long-standing challenge in the fields of chemistry, physics, and material science. Most existing algorithms suffer from either approximations that are too inaccurate, or fundamental computational complexity that is too high. In studies of simplified models of strongly-correlated materials, tensor network algorithms have demonstrated the potential to overcome these limitations. This thesis describes our research efforts to develop new algorithms for two-dimensional (2D) tensor networks that extend their range of applicability beyond simple models and toward simulations of realistic materials. We begin by describing three algorithms for projected entangled-pair states (PEPS, a type of 2D tensor network) that address three of their major limitations: numerical stability, long-range interactions, and computational efficiency of operators. We first describe (Ch. 2) a technique for converting a PEPS into a canonical form. By generalizing the QR matrix factorization to entire columns of a PEPS, we approximately generate a PEPS with analogous properties to the well-studied canonical 1D tensor network. This connection enables enhanced numerical stability and ground state optimization protocols. Next, we describe (Ch. 3) a technique to efficiently represent physically realistic long-range interactions between particles in a 2D tensor network operator, a projected entangled-pair operator (PEPO). We express the long-range interaction as a linear combination of correlation functions of an auxiliary system with only nearest-neighbor interactions. This allows us to represent long-range pairwise interactions with linear scaling in the system size. The third algorithm we present (Ch. 4) is a method to rewrite the 2D PEPO in terms of a set of quasi-1D tensor network operators, by exploiting intrinsic redundancies in the PEPO representation. We also report an on-the-fly contraction algorithm using these operators that allows for a significant reduction in computational complexity, enabling larger scale simulations of more complex problems. We then move on to describe (Ch. 5) an extensive study of a "synthetic 2D material"---a two-dimensional square array of ultracold Rydberg atoms---enabled by some of the new algorithms. We investigate the ground state quantum phases of this system in the bulk and on large finite arrays directly comparable to recent quantum simulation experiments. We find a greatly altered phase diagram compared to earlier numerical and experimental studies, and in particular, we uncover an unexpected entangled nematic phase that appears in the absence of geometric frustration. Finally, we finish by describing (Ch. 6) a somewhat unrelated, but topically similar project in which we investigate the feasibility of laser cooling small molecules with two metal atoms to ultracold temperatures. We study in detail the properties of the molecules YbCCCa and YbCCAl for application in precision measurement experiments.</p

    Voicing Kinship with Machines: Diffractive Empathetic Listening to Synthetic Voices in Performance.

    Get PDF
    This thesis contributes to the field of voice studies by analyzing the design and production of synthetic voices in performance. The work explores six case studies, consisting of different performative experiences of the last decade (2010- 2020) that featured synthetic voice design. It focusses on the political and social impact of synthetic voices, starting from yet challenging the concepts of voice in the machine and voice of the machine. The synthetic voices explored are often playing the role of simulated artificial intelligences, therefore this thesis expands its questions towards technology at large. The analysis of the case studies follows new materialist and posthumanist premises, yet it tries to confute the patriarchal and neoliberal approach towards technological development through feminist and de-colonial approaches, developing a taxonomy for synthetic voices in performance. Chapter 1 introduces terms and explains the taxonomy. Chapter 2 looks at familiar representations of fictional AI. Chapter 3 introduces headphone theatre exploring immersive practices. Chapters 4 and 5 engage with chatbots. Chapter 6 goes in depth exploring Human and Artificial Intelligence interaction, whereas chapter 7 moves slightly towards music production and live art. The body of the thesis includes the work of Pipeline Theatre, Rimini Protokoll, Annie Dorsen, Begüm Erciyas, and Holly Herndon. The analysis is informed by posthumanism, feminism, and performance studies, starting from my own practice as sound designer and singer, looking at aesthetics of reproduction, audience engagement, and voice composition. This thesis has been designed to inspire and provoke practitioners and scholars to explore synthetic voices further, question predominant biases of binarism and acknowledge their importance in redefining technology

    Machine learning discovery of optimal quadrature rules for isogeometric analysis

    Get PDF
    We propose the use of machine learning techniques to find optimal quadrature rules for the construction of stiffness and mass matrices in isogeometric analysis (IGA). We initially consider 1D spline spaces of arbitrary degree spanned over uniform and non-uniform knot sequences, and then the generated optimal rules are used for integration over higher-dimensional spaces using tensor products. The quadrature rule search is posed as an optimization problem and solved by a machine learning strategy based on adaptive gradient-descent. However, since the optimization space is highly non-convex, the success of the search strongly depends on the number of quadrature points and the parameter initialization. Thus, we use a dynamic programming strategy that initializes the parameters from the optimal solution over the spline space with a lower number of knots. With this method, we found optimal quadrature rules for spline spaces when using IGA discretizations with up to 50 uniform elements and polynomial degrees up to 8, showing the generality of the approach in this scenario. For non-uniform partitions, the method also finds an optimal rule in a reasonable number of test cases. We also assess the generated optimal rules in two practical case studies, namely, the eigenvalue problem of the Laplace operator and the eigenfrequency analysis of freeform curved beams, where the latter problem shows the applicability of the method to curved geometries. In particular, the proposed method results in savings with respect to traditional Gaussian integration of up to 44% in 1D, 68% in 2D, and 82% in 3D spaces.Euskampus Foundation through the ORLEG-IA project in the Misiones Euskampus 2.0 program. RYC2021-032853-I/MCIN/AEI/10.13039/501100011033 funded by the Spanish Ministry of Science and Innovation and by the European Union NextGenerationEU/PRTR

    Expectations and expertise in artificial intelligence: specialist views and historical perspectives on conceptualisation, promise, and funding

    Get PDF
    Artificial intelligence’s (AI) distinctiveness as a technoscientific field that imitates the ability to think went through a resurgence of interest post-2010, attracting a flood of scientific and popular expectations as to its utopian or dystopian transformative consequences. This thesis offers observations about the formation and dynamics of expectations based on documentary material from the previous periods of perceived AI hype (1960-1975 and 1980-1990, including in-between periods of perceived dormancy), and 25 interviews with UK-based AI specialists, directly involved with its development, who commented on the issues during the crucial period of uncertainty (2017-2019) and intense negotiation through which AI gained momentum prior to its regulation and relatively stabilised new rounds of long-term investment (2020-2021). This examination applies and contributes to longitudinal studies in the sociology of expectations (SoE) and studies of experience and expertise (SEE) frameworks, proposing a historical sociology of expertise and expectations framework. The research questions, focusing on the interplay between hype mobilisation and governance, are: (1) What is the relationship between AI practical development and the broader expectational environment, in terms of funding and conceptualisation of AI? (2) To what extent does informal and non-developer assessment of expectations influence formal articulations of foresight? (3) What can historical examinations of AI’s conceptual and promissory settings tell about the current rebranding of AI? The following contributions are made: (1) I extend SEE by paying greater attention to the interplay between technoscientific experts and wider collective arenas of discourse amongst non-specialists and showing how AI’s contemporary research cultures are overwhelmingly influenced by the hype environment but also contribute to it. This further highlights the interaction between competing rationales focusing on exploratory, curiosity-driven scientific research against exploitation-oriented strategies at formal and informal levels. (2) I suggest benefits of examining promissory environments in AI and related technoscientific fields longitudinally, treating contemporary expectations as historical products of sociotechnical trajectories through an authoritative historical reading of AI’s shifting conceptualisation and attached expectations as a response to availability of funding and broader national imaginaries. This comes with the benefit of better perceiving technological hype as migrating from social group to social group instead of fading through reductionist cycles of disillusionment; either by rebranding of technical operations, or by the investigation of a given field by non-technical practitioners. It also sensitises to critically examine broader social expectations as factors for shifts in perception about theoretical/basic science research transforming into applied technological fields. Finally, (3) I offer a model for understanding the significance of interplay between conceptualisations, promising, and motivations across groups within competing dynamics of collective and individual expectations and diverse sources of expertise

    Convolutional Neural Networks as 2-D systems

    Full text link
    This paper introduces a novel representation of convolutional Neural Networks (CNNs) in terms of 2-D dynamical systems. To this end, the usual description of convolutional layers with convolution kernels, i.e., the impulse responses of linear filters, is realized in state space as a linear time-invariant 2-D system. The overall convolutional Neural Network composed of convolutional layers and nonlinear activation functions is then viewed as a 2-D version of a Lur'e system, i.e., a linear dynamical system interconnected with static nonlinear components. One benefit of this 2-D Lur'e system perspective on CNNs is that we can use robust control theory much more efficiently for Lipschitz constant estimation than previously possible
    • …
    corecore