140 research outputs found

    Randomized Strategies for Robust Combinatorial Optimization

    Full text link
    In this paper, we study the following robust optimization problem. Given an independence system and candidate objective functions, we choose an independent set, and then an adversary chooses one objective function, knowing our choice. Our goal is to find a randomized strategy (i.e., a probability distribution over the independent sets) that maximizes the expected objective value. To solve the problem, we propose two types of schemes for designing approximation algorithms. One scheme is for the case when objective functions are linear. It first finds an approximately optimal aggregated strategy and then retrieves a desired solution with little loss of the objective value. The approximation ratio depends on a relaxation of an independence system polytope. As applications, we provide approximation algorithms for a knapsack constraint or a matroid intersection by developing appropriate relaxations and retrievals. The other scheme is based on the multiplicative weights update method. A key technique is to introduce a new concept called (η,γ)(\eta,\gamma)-reductions for objective functions with parameters η,γ\eta, \gamma. We show that our scheme outputs a nearly α\alpha-approximate solution if there exists an α\alpha-approximation algorithm for a subproblem defined by (η,γ)(\eta,\gamma)-reductions. This improves approximation ratio in previous results. Using our result, we provide approximation algorithms when the objective functions are submodular or correspond to the cardinality robustness for the knapsack problem

    AFPTAS results for common variants of bin packing: A new method to handle the small items

    Full text link
    We consider two well-known natural variants of bin packing, and show that these packing problems admit asymptotic fully polynomial time approximation schemes (AFPTAS). In bin packing problems, a set of one-dimensional items of size at most 1 is to be assigned (packed) to subsets of sum at most 1 (bins). It has been known for a while that the most basic problem admits an AFPTAS. In this paper, we develop methods that allow to extend this result to other variants of bin packing. Specifically, the problems which we study in this paper, for which we design asymptotic fully polynomial time approximation schemes, are the following. The first problem is "Bin packing with cardinality constraints", where a parameter k is given, such that a bin may contain up to k items. The goal is to minimize the number of bins used. The second problem is "Bin packing with rejection", where every item has a rejection penalty associated with it. An item needs to be either packed to a bin or rejected, and the goal is to minimize the number of used bins plus the total rejection penalty of unpacked items. This resolves the complexity of two important variants of the bin packing problem. Our approximation schemes use a novel method for packing the small items. This new method is the core of the improved running times of our schemes over the running times of the previous results, which are only asymptotic polynomial time approximation schemes (APTAS)

    A Deterministic Fully Polynomial Time Approximation Scheme For Counting Integer Knapsack Solutions Made Easy

    Get PDF
    Given n elements with nonnegative integer weights w=(w_1,...,w_n), an integer capacity C and positive integer ranges u=(u_1,...,u_n), we consider the counting version of the classic integer knapsack problem: find the number of distinct multisets whose weights add up to at most C. We give a deterministic algorithm that estimates the number of solutions to within relative error epsilon in time polynomial in n, log U and 1/epsilon, where U=max_i u_i. More precisely, our algorithm runs in O((n^3 log^2 U)/epsilon) log (n log U)/epsilon) time. This is an improvement of n^2 and 1/epsilon (up to log terms) over the best known deterministic algorithm by Gopalan et al. [FOCS, (2011), pp. 817-826]. Our algorithm is relatively simple, and its analysis is rather elementary. Our results are achieved by means of a careful formulation of the problem as a dynamic program, using the notion of binding constraints

    Hybrid Rounding Techniques for Knapsack Problems

    Get PDF
    We address the classical knapsack problem and a variant in which an upper bound is imposed on the number of items that can be selected. We show that appropriate combinations of rounding techniques yield novel and powerful ways of rounding. As an application of these techniques, we present a linear-storage Polynomial Time Approximation Scheme (PTAS) and a Fully Polynomial Time Approximation Scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in linear time. This linear complexity bound gives a substantial improvement of the best previously known polynomial bounds.Comment: 19 LaTeX page

    An FPTAS for the Δ\Delta-modular multidimensional knapsack problem

    Full text link
    It is known that there is no EPTAS for the mm-dimensional knapsack problem unless W[1]=FPTW[1] = FPT. It is true already for the case, when m=2m = 2. But, an FPTAS still can exist for some other particular cases of the problem. In this note, we show that the mm-dimensional knapsack problem with a Δ\Delta-modular constraints matrix admits an FPTAS, whose complexity bound depends on Δ\Delta linearly. More precisely, the proposed algorithm complexity is O(TLP⋅(1/ε)m+3⋅(2m)2m+6⋅Δ),O(T_{LP} \cdot (1/\varepsilon)^{m+3} \cdot (2m)^{2m + 6} \cdot \Delta), where TLPT_{LP} is the linear programming complexity bound. In particular, for fixed mm the arithmetical complexity bound becomes O(n⋅(1/ε)m+3⋅Δ). O(n \cdot (1/\varepsilon)^{m+3} \cdot \Delta). Our algorithm is actually a generalisation of the classical FPTAS for the 11-dimensional case. Strictly speaking, the considered problem can be solved by an exact polynomial-time algorithm, when mm is fixed and Δ\Delta grows as a polynomial on nn. This fact can be observed combining previously known results. In this paper, we give a slightly more accurate analysis to present an exact algorithm with the complexity bound O(n⋅Δm+1), for m being fixed. O(n \cdot \Delta^{m + 1}), \quad \text{ for $m$ being fixed}. Note that the last bound is non-linear by Δ\Delta with respect to the given FPTAS
    • …
    corecore