307 research outputs found

    A Faster FPTAS for #Knapsack

    Get PDF
    Given a set W = {w_1,..., w_n} of non-negative integer weights and an integer C, the #Knapsack problem asks to count the number of distinct subsets of W whose total weight is at most C. In the more general integer version of the problem, the subsets are multisets. That is, we are also given a set {u_1,..., u_n} and we are allowed to take up to u_i items of weight w_i. We present a deterministic FPTAS for #Knapsack running in O(n^{2.5}epsilon^{-1.5}log(n epsilon^{-1})log (n epsilon)) time. The previous best deterministic algorithm [FOCS 2011] runs in O(n^3 epsilon^{-1} log(n epsilon^{-1})) time (see also [ESA 2014] for a logarithmic factor improvement). The previous best randomized algorithm [STOC 2003] runs in O(n^{2.5} sqrt{log (n epsilon^{-1})} + epsilon^{-2} n^2) time. Therefore, for the case of constant epsilon, we close the gap between the O~(n^{2.5}) randomized algorithm and the O~(n^3) deterministic algorithm. For the integer version with U = max_i {u_i}, we present a deterministic FPTAS running in O(n^{2.5}epsilon^{-1.5}log(n epsilon^{-1} log U)log (n epsilon) log^2 U) time. The previous best deterministic algorithm [TCS 2016] runs in O(n^3 epsilon^{-1}log(n epsilon^{-1} log U) log^2 U) time

    Randomized Strategies for Robust Combinatorial Optimization

    Full text link
    In this paper, we study the following robust optimization problem. Given an independence system and candidate objective functions, we choose an independent set, and then an adversary chooses one objective function, knowing our choice. Our goal is to find a randomized strategy (i.e., a probability distribution over the independent sets) that maximizes the expected objective value. To solve the problem, we propose two types of schemes for designing approximation algorithms. One scheme is for the case when objective functions are linear. It first finds an approximately optimal aggregated strategy and then retrieves a desired solution with little loss of the objective value. The approximation ratio depends on a relaxation of an independence system polytope. As applications, we provide approximation algorithms for a knapsack constraint or a matroid intersection by developing appropriate relaxations and retrievals. The other scheme is based on the multiplicative weights update method. A key technique is to introduce a new concept called (η,γ)(\eta,\gamma)-reductions for objective functions with parameters η,γ\eta, \gamma. We show that our scheme outputs a nearly α\alpha-approximate solution if there exists an α\alpha-approximation algorithm for a subproblem defined by (η,γ)(\eta,\gamma)-reductions. This improves approximation ratio in previous results. Using our result, we provide approximation algorithms when the objective functions are submodular or correspond to the cardinality robustness for the knapsack problem

    Counting approximately-shortest paths in directed acyclic graphs

    Full text link
    Given a directed acyclic graph with positive edge-weights, two vertices s and t, and a threshold-weight L, we present a fully-polynomial time approximation-scheme for the problem of counting the s-t paths of length at most L. We extend the algorithm for the case of two (or more) instances of the same problem. That is, given two graphs that have the same vertices and edges and differ only in edge-weights, and given two threshold-weights L_1 and L_2, we show how to approximately count the s-t paths that have length at most L_1 in the first graph and length at most L_2 in the second graph. We believe that our algorithms should find application in counting approximate solutions of related optimization problems, where finding an (optimum) solution can be reduced to the computation of a shortest path in a purpose-built auxiliary graph

    Hybrid Rounding Techniques for Knapsack Problems

    Get PDF
    We address the classical knapsack problem and a variant in which an upper bound is imposed on the number of items that can be selected. We show that appropriate combinations of rounding techniques yield novel and powerful ways of rounding. As an application of these techniques, we present a linear-storage Polynomial Time Approximation Scheme (PTAS) and a Fully Polynomial Time Approximation Scheme (FPTAS) that compute an approximate solution, of any fixed accuracy, in linear time. This linear complexity bound gives a substantial improvement of the best previously known polynomial bounds.Comment: 19 LaTeX page
    corecore