40 research outputs found

    Algorithms for propositional model counting

    Get PDF
    AbstractWe present algorithms for the propositional model counting problem #SAT. The algorithms utilize tree decompositions of certain graphs associated with the given CNF formula; in particular we consider primal, dual, and incidence graphs. We describe the algorithms coherently for a direct comparison and with sufficient detail for making an actual implementation reasonably easy. We discuss several aspects of the algorithms including worst-case time and space requirements

    Answer Set Solving with Bounded Treewidth Revisited

    Full text link
    Parameterized algorithms are a way to solve hard problems more efficiently, given that a specific parameter of the input is small. In this paper, we apply this idea to the field of answer set programming (ASP). To this end, we propose two kinds of graph representations of programs to exploit their treewidth as a parameter. Treewidth roughly measures to which extent the internal structure of a program resembles a tree. Our main contribution is the design of parameterized dynamic programming algorithms, which run in linear time if the treewidth and weights of the given program are bounded. Compared to previous work, our algorithms handle the full syntax of ASP. Finally, we report on an empirical evaluation that shows good runtime behaviour for benchmark instances of low treewidth, especially for counting answer sets.Comment: This paper extends and updates a paper that has been presented on the workshop TAASP'16 (arXiv:1612.07601). We provide a higher detail level, full proofs and more example

    Treewidth with a Quantifier Alternation Revisited

    Get PDF
    In this paper we take a closer look at the parameterized complexity of existsforall SAT, the prototypical complete problem of the class Sigma_2^p, the second level of the polynomial hierarchy. We provide a number of tight fine-grained bounds on the complexity of this problem and its variants with respect to the most important structural graph parameters. Specifically, we show the following lower bounds (assuming the ETH): - It is impossible to decide existsforall SAT in time less than double-exponential in the input formula\u27s treewidth. More strongly, we establish the same bound with respect to the formula\u27s primal vertex cover, a much more restrictive measure. This lower bound, which matches the performance of known algorithms, shows that the degeneration of the performance of treewidth-based algorithms to a tower of exponentials already begins in problems with one quantifier alternation. - For the more general existsforall CSP problem over a non-boolean domain of size B, there is no algorithm running in time 2^{B^{o(vc)}}, where vc is the input\u27s primal vertex cover. - existsforall SAT is already NP-hard even when the input formula has constant modular treewidth (or clique-width), indicating that dense graph parameters are less useful for problems in Sigma_2^p. - For the two weighted versions of existsforall SAT recently introduced by de Haan and Szeider, called exists_kforall SAT and existsforall_k SAT, we give tight upper and lower bounds parameterized by treewidth (or primal vertex cover) and the weight k. Interestingly, the complexity of these two problems turns out to be quite different: one is double-exponential in treewidth, while the other is double-exponential in k. We complement the above negative results by showing a double-exponential FPT algorithm for QBF parameterized by vertex cover, showing that for this parameter the complexity never goes beyond double-exponential, for any number of quantifier alternations

    Backdoor Sets for CSP

    Get PDF
    A backdoor set of a CSP instance is a set of variables whose instantiation moves the instance into a fixed class of tractable instances (an island of tractability). An interesting algorithmic task is to find a small backdoor set efficiently: once it is found we can solve the instance by solving a number of tractable instances. Parameterized complexity provides an adequate framework for studying and solving this algorithmic task, where the size of the backdoor set provides a natural parameter. In this survey we present some recent parameterized complexity results on CSP backdoor sets, focusing on backdoor sets into islands of tractability that are defined in terms of constraint languages

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore