2,782 research outputs found

    A 16-channel Digital TDC Chip with internal buffering and selective readout for the DIRC Cherenkov counter of the BABAR experiment

    Full text link
    A 16-channel digital TDC chip has been built for the DIRC Cherenkov counter of the BaBar experiment at the SLAC B-factory (Stanford, USA). The binning is 0.5 ns, the conversion time 32 ns and the full-scale 32 mus. The data driven architecture integrates channel buffering and selective readout of data falling within a programmable time window. The time measuring scale is constantly locked to the phase of the (external) clock. The linearity is better than 80 ps rms. The dead time loss is less than 0.1% for incoherent random input at a rate of 100 khz on each channel. At such a rate the power dissipation is less than 100 mw. The die size is 36 mm2.Comment: Latex, 18 pages, 13 figures (14 .eps files), submitted to NIM

    Distributed clock generator for synchronous SoC using ADPLL network

    Get PDF
    International audienceThis paper presents a novel architecture of on-chip clock generation employing a network of oscillators synchronized by the distributed all-digital PLLs (ADPLLs). The implemented prototype has 16 clocking domains operating synchronously in a frequency range of 1.1-2.4 GHz. The synchronization error between the neighboring clock domains is less than 60 ps. The fully digital architecture of the generation offers flexibility and efficient synchronization control suitable for use in synchronous SoCs

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with specifi c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of specifi cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and specifi c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    High dynamic global positioning system receiver

    Get PDF
    A Global Positioning System (GPS) receiver having a number of channels, receives an aggregate of pseudorange code time division modulated signals. The aggregate is converted to baseband and then to digital form for separate processing in the separate channels. A fast fourier transform processor computes the signal energy as a function of Doppler frequency for each correlation lag, and a range and frequency estimator computes estimates of pseudorange, and frequency. Raw estimates from all channels are used to estimate receiver position, velocity, clock offset and clock rate offset in a conventional navigation and control unit, and based on the unit that computes smoothed estimates for the next measurement interval

    Study of voltage controlled oscillator based analog-to-digital converter

    Get PDF
    A voltage controlled oscillator (VCO) based analog-to-digital converter (ADC) is a time based architecture with a first-order noise-shaping property, which can be implemented using a VCO and digital circuits. This thesis analyzes the performance of VCO-based ADCs in the presence of non idealities such as jitter, nonlinearity, mismatch, and the metastability of D flip-flops. Based on this analysis, design criteria for determining parameters for VCO-based ADCs are described. Further, the study involves the use of VCO based Dual-slope A/D converter and its behaviour under different input voltage level. Graph is plotted between output voltages of the integrator vs. time. Digital circuits like a bit-counter and logic circuits are used for operation mode. A normal VCO model is also done in MATLAB-simulink environment and studied under variable input frequency and corresponding output plots are view

    Timing recovery techniques for digital recording systems

    Get PDF

    Architecture of a network-in-the-Loop environment for characterizing AC power system behavior

    Get PDF
    This paper describes the method by which a large hardware-in-the-loop environment has been realized for three-phase ac power systems. The environment allows an entire laboratory power-network topology (generators, loads, controls, protection devices, and switches) to be placed in the loop of a large power-network simulation. The system is realized by using a realtime power-network simulator, which interacts with the hardware via the indirect control of a large synchronous generator and by measuring currents flowing from its terminals. These measured currents are injected into the simulation via current sources to close the loop. This paper describes the system architecture and, most importantly, the calibration methodologies which have been developed to overcome measurement and loop latencies. In particular, a new "phase advance" calibration removes the requirement to add unwanted components into the simulated network to compensate for loop delay. The results of early commissioning experiments are demonstrated. The present system performance limits under transient conditions (approximately 0.25 Hz/s and 30 V/s to contain peak phase-and voltage-tracking errors within 5. and 1%) are defined mainly by the controllability of the synchronous generator

    DSN advanced receiver: Breadboard description and test results

    Get PDF
    A breadboard Advanced Receiver for use in the Deep Space Network was designed, built, and tested in the laboratory. Field testing was also performed during Voyager Uranus encounter at DSS-13. The development of the breadboard is intended to lead towards implementation of the new receiver throughout the network. The receiver is described on a functional level and then in terms of more specific hardware and software architecture. The results of performance tests in the laboratory and in the field are given. Finally, there is a discussion of suggested improvements for the next phase of development
    corecore