463 research outputs found

    IPv6 Network Mobility

    Get PDF
    Network Authentication, Authorization, and Accounting has been used since before the days of the Internet as we know it today. Authentication asks the question, “Who or what are you?” Authorization asks, “What are you allowed to do?” And fi nally, accounting wants to know, “What did you do?” These fundamental security building blocks are being used in expanded ways today. The fi rst part of this two-part series focused on the overall concepts of AAA, the elements involved in AAA communications, and highlevel approaches to achieving specifi c AAA goals. It was published in IPJ Volume 10, No. 1[0]. This second part of the series discusses the protocols involved, specifi c applications of AAA, and considerations for the future of AAA

    Multi-layer traffic control for wireless networks

    Get PDF
    Le reti Wireless LAN, così come definite dallo standard IEEE 802.11, garantiscono connettività senza fili nei cosiddetti “hot-spot” (aeroporti, hotel, etc.), nei campus universitari, nelle intranet aziendali e nelle abitazioni. In tali scenari, le WLAN sono denotate come “ad infrastruttura” nel senso che la copertura della rete è basata sulla presenza di un “Access Point” che fornisce alle stazioni mobili l’accesso alla rete cablata. Esiste un ulteriore approccio (chiamato “ad-hoc”) in cui le stazioni mobili appartenenti alla WLAN comunicano tra di loro senza l’ausilio dell’Access Point. Le Wireless LAN tipicamente sono connesse alla rete di trasporto (che essa sia Internet o una Intranet aziendale) usando un’infrastruttura cablata. Le reti wireless Mesh ad infrastruttura (WIMN) rappresentano un’alternativa valida e meno costosa alla classica infrastruttura cablata. A testimonianza di quanto appena affermato vi è la comparsa e la crescita sul mercato di diverse aziende specializzate nella fornitura di infrastrutture di trasporto wireless e il lancio di varie attività di standardizzazione (tra cui spicca il gruppo 802.11s). La facilità di utilizzo, di messa in opera di una rete wireless e i costi veramente ridotti hanno rappresentato fattori critici per lo straordinario successo di tale tecnologia. Di conseguenza possiamo affermare che la tecnologia wireless ha modificato lo stile di vita degli utenti, il modo di lavorare, il modo di passare il tempo libero (video conferenze, scambio foto, condivisione di brani musicali, giochi in rete, messaggistica istantanea ecc.). D’altro canto, lo sforzo per garantire lo sviluppo di reti capaci di supportare servizi dati ubiqui a velocità di trasferimento elevate è strettamente legato a numerose sfide tecniche tra cui: il supporto per l’handover tra differenti tecnologie (WLAN/3G), la certezza di accesso e autenticazione sicure, la fatturazione e l’accounting unificati, la garanzia di QoS ecc. L’attività di ricerca svolta nell’arco del Dottorato si è focalizzata sulla definizione di meccanismi multi-layer per il controllo del traffico in reti wireless. In particolare, nuove soluzioni di controllo del traffico sono state realizzate a differenti livelli della pila protocollare (dallo strato data-link allo strato applicativo) in modo da fornire: funzionalità avanzate (autenticazione sicura, differenziazione di servizio, handover trasparente) e livelli soddisfacenti di Qualità del Servizio. La maggior parte delle soluzioni proposte in questo lavoro di tesi sono state implementate in test-bed reali. Questo lavoro riporta i risultati della mia attività di ricerca ed è organizzato nel seguente modo: ogni capitolo presenta, ad uno specifico strato della pila protocollare, un meccanismo di controllo del traffico con l’obiettivo di risolvere le problematiche presentate precedentemente. I Capitoli 1 e 2 fanno riferimento allo strato di Trasporto ed investigano il problema del mantenimento della fairness per le connessioni TCP. L’unfairness TCP conduce ad una significativa degradazione delle performance implicando livelli non soddisfacenti di QoS. Questi capitoli descrivono l’attività di ricerca in cui ho impiegato il maggior impegno durante gli studi del dottorato. Nel capitolo 1 viene presentato uno studio simulativo delle problematiche di unfairness TCP e vengono introdotti due possibili soluzioni basate su rate-control. Nel Capitolo 2 viene derivato un modello analitico per la fairness TCP e si propone uno strumento per la personalizzazione delle politiche di fairness. Il capitolo 3 si focalizza sullo strato Applicativo e riporta diverse soluzioni di controllo del traffico in grado di garantire autenticazione sicura in scenari di roaming tra provider wireless. Queste soluzioni rappresentano parte integrante del framework UniWireless, un testbed nazionale sviluppato nell’ambito del progetto TWELVE. Il capitolo 4 descrive, nuovamente a strato Applicativo, una soluzione (basata su SIP) per la gestione della mobilità degli utenti in scenari di rete eterogenei ovvero quando diverse tecnologie di accesso radio sono presenti (802.11/WiFi, Bluetooth, 2.5G/3G). Infine il Capitolo 5 fa riferimento allo strato Data-Link presentando uno studio preliminare di un approccio per il routing e il load-balancing in reti Mesh infrastrutturate.Wireless LANs, as they have been defined by the IEEE 802.11 standard, are shared media enabling connectivity in the so-called “hot-spots” (airports, hotel lounges, etc.), university campuses, enterprise intranets, as well as “in-home” for home internet access. With reference to the above scenarios, WLANs are commonly denoted as “infra-structured” in the sense that WLAN coverage is based on “Access Points” which provide the mobile stations with access to the wired network. In addition to this approach, there exists also an “ad-hoc” mode to organize WLANs where mobile stations talk to each other without the need of Access Points. Wireless LANs are typically connected to the wired backbones (Internet or corporate intranets) using a wired infrastructure. Wireless Infrastructure Mesh Networks (WIMN) may represent a viable and cost-effective alternative to this traditional wired approach. This is witnessed by the emergence and growth of many companies specialized in the provisioning of wireless infrastructure solutions, as well as the launch of standardization activities (such as 802.11s). The easiness of deploying and using a wireless network, and the low deployment costs have been critical factors in the extraordinary success of such technology. As a logical consequence, the wireless technology has allowed end users being connected everywhere – every time and it has changed several things in people’s lifestyle, such as the way people work, or how they live their leisure time (videoconferencing, instant photo or music sharing, network gaming, etc.). On the other side, the effort to develop networks capable of supporting ubiquitous data services with very high data rates in strategic locations is linked with many technical challenges including seamless vertical handovers across WLAN and 3G radio technologies, security, 3G-based authentication, unified accounting and billing, consistent QoS and service provisioning, etc. My PhD research activity have been focused on multi-layer traffic control for Wireless LANs. In particular, specific new traffic control solutions have been designed at different layers of the protocol stack (from the link layer to the application layer) in order to guarantee i) advanced features (secure authentication, service differentiation, seamless handover) and ii) satisfactory level of perceived QoS. Most of the proposed solutions have been also implemented in real testbeds. This dissertation presents the results of my research activity and is organized as follows: each Chapter presents, at a specific layer of the protocol stack, a traffic control mechanism in order to address the introduced above issues. Chapter 1 and Charter 2 refer to the Transport Layer, and they investigate the problem of maintaining fairness for TCP connections. TCP unfairness may result in significant degradation of performance leading to users perceiving unsatisfactory Quality of Service. These Chapters describe the research activity in which I spent the most significant effort. Chapter 1 proposes a simulative study of the TCP fairness issues and two different solutions based on Rate Control mechanism. Chapter 2 illustrates an analytical model of the TCP fairness and derives a framework allowing wireless network providers to customize fairness policies. Chapter 3 focuses on the Application Layer and it presents new traffic control solutions able to guarantee secure authentication in wireless inter-provider roaming scenarios. These solutions are an integral part of the UniWireless framework, a nationwide distributed Open Access testbed that has been jointly realized by different research units within the TWELVE national project. Chapter 4 describes again an Application Layer solution, based on Session Initiation Protocol to manage user mobility and provide seamless mobile multimedia services in a heterogeneous scenario where different radio access technologies are used (802.11/WiFi, Bluetooth, 2.5G/3G networks). Finally Chapter 5 refers to the Data Link Layer and presents a preliminary study of a general approach for routing and load balancing in Wireless Infrastructure Mesh Network. The key idea is to dynamically select routes among a set of slowly changing alternative network paths, where paths are created through the reuse of classical 802.1Q multiple spanning tree mechanisms

    On Switchover Performance in Multihomed SCTP

    Get PDF
    Abstract The emergence of real-time applications, like Voice over IP and video conferencing, in IP networks implies a challenge to the underlying infrastructure. Several real-time applications have requirements on timeliness as well as on reliability and are accompanied by signaling applications to set up, tear down and control the media sessions. Since neither of the traditional transport protocols responsible for end-to-end transfer of messages was found suitable for signaling traffic, the Stream Control Transmission Protocol (SCTP) was standardized. The focus for the protocol was initially on telephony signaling applications, but it was later widened to serve as a general purpose transport protocol. One major new feature to enhance robustness in SCTP is multihoming, which enables for more than one path within the same association. In this thesis we evaluate some of the mechanisms affecting transmission performance in case of a switchover between paths in a multihomed SCTP session. The major part of the evaluation concerns a failure situation, where the current path is broken. In case of failure, the endpoint does not get an explicit notification, but has to react upon missing acknowledgements. The challenge is to distinguish path failure from temporary congestion to decide when to switch to an alternate path. A too fast switchover may be spurious, which could reduce transmission performance, while a too late switchover also results in reduced transmission performance. This implies a tradeoff which involves several protocol as well as network parameters and we elaborate among these to give a coherent view of the parameters and their interaction. Further, we present a recommendation on how to tune the parameters to meet telephony signaling requirements, still without violating fairness to other traffic. We also consider another angle of switchover performance, the startup on the alternate path. Since the available capacity is usually unknown to the sender, the transmission on a new path is started at a low rate and then increased as acknowledgements of successful transmissions return. In case of switchover in the middle of a media session the startup phase after a switchover could cause problems to the application. In multihomed SCTP the availability of the alternate path makes it feasible for the end-host to estimate the available capacity on the alternate path prior to the switchover. Thus, it would be possible to implement a more efficient startup scheme. In this thesis we combine different switchover scenarios with relevant traffic. For these combinations, we analytically evaluate and quantify the potential performance gain from utilizing an ideal startup mechanism as compared to the traditional startup procedure

    Networking vendor strategy and competition and their impact on enterprise network design and implementation

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; in conjunction with the Leaders for Manufacturing Program at MIT, 2006.Includes bibliographical references (leaves 93-99).While a significant amount of literature exists that discuss platform strategies used by general IT vendors, less of it has to do with corporate networking technology vendors specifically. However, many of the same strategic principles that are used to analyze general IT vendors can also be used to analyze networking vendors. This paper extends the platform model that was developed by Michael Cusumano and Annabel Gawer to networking vendors, outlining the unique strategic aspects that the networking market possesses. The paper then reviews the strategy of the first dominant corporate datacom vendor, IBM, how it achieved its dominance, and how it lost it. The paper then discusses the strategies of various vendors who attempted to replace IBM as the dominant networking platform vendor and how they failed to do so. Finally, the paper discusses Cisco Systems, a vendor who did manage to achieve a level of dominance that parallels IBM's, and how that company has utilized its strategy to achieve and maintain its current dominance. Finally, Cisco's current strategic challenges are discussed. The impact of the strategies of the various vendors on the evolution of corporate networking is also discussed.by Ray Fung.S.M.M.B.A

    Voice over IP (VoIP) Implementation in UTP Campus Network

    Get PDF
    The purpose of this paper is to make the fundamentals research on the Voice over Internet Protocol (VoIP) technology with the implementation of the VoIP system in the UTP network. The problem that been arise before the idea of this paper is the communication problem faced by student and staff when using the PSTN Networks. The difficulties to communicate across PSTN and IP networks are the main problem occurs in our campus networks. The final outcome from this project is the Voice over Internet Protocol (VoIP) system that implemented through out the campus. This study also includes the implementation of intelligent mechanism to authenticate and give user access to the VoIP network. In this paper, the author is using the incremental development model for the implementation and using the common research method such as book review, journal reading and laboratory testing. This implementation may open the new dimension of the communication paradigm in our campus life

    Quality aspects of Internet telephony

    Get PDF
    Internet telephony has had a tremendous impact on how people communicate. Many now maintain contact using some form of Internet telephony. Therefore the motivation for this work has been to address the quality aspects of real-world Internet telephony for both fixed and wireless telecommunication. The focus has been on the quality aspects of voice communication, since poor quality leads often to user dissatisfaction. The scope of the work has been broad in order to address the main factors within IP-based voice communication. The first four chapters of this dissertation constitute the background material. The first chapter outlines where Internet telephony is deployed today. It also motivates the topics and techniques used in this research. The second chapter provides the background on Internet telephony including signalling, speech coding and voice Internetworking. The third chapter focuses solely on quality measures for packetised voice systems and finally the fourth chapter is devoted to the history of voice research. The appendix of this dissertation constitutes the research contributions. It includes an examination of the access network, focusing on how calls are multiplexed in wired and wireless systems. Subsequently in the wireless case, we consider how to handover calls from 802.11 networks to the cellular infrastructure. We then consider the Internet backbone where most of our work is devoted to measurements specifically for Internet telephony. The applications of these measurements have been estimating telephony arrival processes, measuring call quality, and quantifying the trend in Internet telephony quality over several years. We also consider the end systems, since they are responsible for reconstructing a voice stream given loss and delay constraints. Finally we estimate voice quality using the ITU proposal PESQ and the packet loss process. The main contribution of this work is a systematic examination of Internet telephony. We describe several methods to enable adaptable solutions for maintaining consistent voice quality. We have also found that relatively small technical changes can lead to substantial user quality improvements. A second contribution of this work is a suite of software tools designed to ascertain voice quality in IP networks. Some of these tools are in use within commercial systems today

    Vertical handover management with quality of service support

    Get PDF
    For mobile usage of the Internet, new preferences might be desired when considering connectivity and handover between overlapped heterogeneous wireless networks. This work presents a cross-layer vertical handover framework, which includes modules for: multi-criteria decisions that support QoS, soft switching between the multiple interfaces of a mobile device, and a light weight signaling scheme for address resolution. The handover decisions are based on user's configuration, network attributes, and node's context information. A connection is transferred onto a new interface only when it is associated to the newly selected network and ready to take over the traffic. The identity of the mobile node is maintained by leveraging the well-known and widely employed NAT for the purpose of mobility management in a new version that we call Dynamic index NAT. DiNAT supports local and global mobility through hierarchical deployment of anchor points. The network simulator OMNeT++ is used to model the system and test its feasibility.Neue Anwendungen und Dienste steigern die Attraktivität der mobilen Nutzung des Internets und fordern die Beibehaltung der Konnektivität auch beim Wechsel zwischen heterogenen drahtlosen Zugangsnetzen, wobei viele Informationen unterschiedlicher Quellen berücksichtigt werden müssen. Auf Basis dieser Informationen müssen Handover-Entscheidungen getroffen werden, die ein Umschalten zwischen den drahtlosen Schnittstellen bewirken und die Identifikation des mobilen Knotens aktualisieren. Die vorliegende Arbeit stellt ein Rahmenwerk für vertikalen Handover vor, das zudem eine Mobilitätsunterstützung beinhaltet. Es verwendet Algorithmen zur multikriteriellen Entscheidung, die eine breite Reihe von Parametern betrachtet, um so die Kommunikationsdienstgüte (Quality of Service, QoS) für Echtzeitanwendungen bereitzustellen. Darüber hinaus wurde eine Strategie für die stabile und weiche Umschaltung zwischen verschiedenen Schnittstellen des mobilen Geräts entwickelt und eine leichtgewichtige Signalisierung für die Adressauflösung zur schnellen Wiederaufnahme der Datenübertragung vorgeschlagen. Die Dissertation beschreibt den schichtenübergreifenden Handover-Ansatz in drei Modulen, deren Konzept und Funktionalität detailliert diskutiert werden. Handover-Entscheidungen werden auf Grundlage von Benutzerpräferenzen, Netzwerkeigenschaften und Kontextinformationen des mobilen Endgeräts getroffen. Eine Verbindung wird nur dann auf eine neue Schnittstelle umgestellt, wenn diese mit dem neu gewählten Netzwerk in Verbindung steht und entsprechend konfiguriert ist. Für die Aktualisierung der Identität des mobilen Knotens wird der bekannte Mechanismus „Network Address Translation“ (NAT) wesentlich erweitert, was als Dynamic index NAT (DiNAT) bezeichnet wird. Sowohl lokale als auch globale Mobilität werden durch eine hierarchische Bereitstellung von DiNAT-fähigen Knoten unterstützt, ohne dass hierzu ein Vorwissen oder die Kooperation der Nachbar-Netzwerke notwendig ist. Viele solcher Knoten können zur Lastverteilung installiert werden, da die Dissertation einen AuswahlmechanismusWith a variety of new applications and services offered for mobile users of the Internet, new usage plans and preferences in connectivity to wireless networks might be desired. Connectivity anywhere and anytime through switching between heterogeneous wireless networks became common communication scenarios for many users. To maintain the connectivity for mobile nodes and the continuity of their running sessions, handover decisions, a proper switching scheme between the wireless interfaces of the communication device, and the identification of mobile nodes must be managed. This work presents a vertical handover framework including a mobility management solution as well. It employs multi-criteria decision algorithms that consider a wide range of parameters, mainly to support Quality of Service (QoS) for real-time applications, applies a strategy for stable and soft switching between the multiple interfaces of the mobile device, and presents a light weight signaling scheme for address resolution to quickly recover running sessions. The handover decisions are based on user’s configuration, network attributes, and node’s context information. A connection is transferred onto a new interface only when it is associated to the newly selected network and ready to take over the traffic. The identity of the mobile node is maintained by leveraging the well-known and widely employed Network Address Translation (NAT) for the purpose of mobility management in a new version that we call Dynamic index NAT (DiNAT). Local and global mobility are supported through hierarchical deployment of DiNAT-enabled anchor points, with no need for pre-knowledge or cooperation of neighbor networks. Many such nodes can be deployed globally for load sharing and route optimization, where a selection mechanism is used to choose a suitable anchor node for each session of a mobile node. The dissertation introduces the proposed approach as a cross-layer system composed of three modules that handle the mentioned tasks, and provides details on the concept of each. The network simulator OMNeT++ is used to model the system and test its feasibility, as compared to a widely adopted solution for mobility management, running real-time applications while moving

    A Credit-based Home Access Point (CHAP) to Improve Application Quality on IEEE 802.11 Networks

    Get PDF
    Increasing availability of high-speed Internet and wireless access points has allowed home users to connect not only their computers but various other devices to the Internet. Every device running different applications requires unique Quality of Service (QoS). It has been shown that delay- sensitive applications, such as VoIP, remote login and online game sessions, suffer increased latency in the presence of throughput-sensitive applications such as FTP and P2P. Currently, there is no mechanism at the wireless AP to mitigate these effects except explicitly classifying the traffic based on port numbers or host IP addresses. We propose CHAP, a credit-based queue management technique, to eliminate the explicit configuration process and dynamically adjust the priority of all the flows from different devices to match their QoS requirements and wireless conditions to improve application quality in home networks. An analytical model is used to analyze the interaction between flows and credits and resulting queueing delays for packets. CHAP is evaluated using Network Simulator (NS2) under a wide range of conditions against First-In-First- Out (FIFO) and Strict Priority Queue (SPQ) scheduling algorithms. CHAP improves the quality of an online game, a VoIP session, a video streaming session, and a Web browsing activity by 20%, 3%, 93%, and 51%, respectively, compared to FIFO in the presence of an FTP download. CHAP provides these improvements similar to SPQ without an explicit classification of flows and a pre- configured scheduling policy. A Linux implementation of CHAP is used to evaluate its performance in a real residential network against FIFO. CHAP reduces the web response time by up to 85% compared to FIFO in the presence of a bulk file download. Our contributions include an analytic model for the credit-based queue management, simulation, and implementation of CHAP, which provides QoS with minimal configuration at the AP

    Traffic behavior and performance in VOIP

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2008.Cataloged from PDF version of thesis report.Includes bibliographical references (page 48-49).Voice over Internet protocol - VoIP, or IP telephony is a technology by which the routing of voice communications are done through Internet or any other Internet Protocol (IP) based networks. Here the voice data is transmitted over a general purpose packet-switched network instead of dedicated traditional circuit-switched voice transmission lines. Voice Over Internet Protocol (VoIP) is a telephony technology used to transmit ordinary telephone calls over the Internet. VoIP takes analogue audio signals and turns them into digital signals (packets) that are transmitted using Internet Protocol (IP) networks. VoIP’s advantages include low cost, flexibility, and mobility. Conversely, VoIP’s disadvantages include sound quality such as latency (delay), jitter, and packet loss. To be more precise the main goal of my thesis was to study the traffic behavior of VoIP. To find out the factors that effect on the performance of VoIP and to mitigate that problems in the network was the main goal hereAshis Kumar SahaB. Computer Science and Engineerin
    • …
    corecore