19,207 research outputs found

    A novel prestack sparse azimuthal AVO inversion

    Full text link
    In this paper we demonstrate a new algorithm for sparse prestack azimuthal AVO inversion. A novel Euclidean prior model is developed to at once respect sparseness in the layered earth and smoothness in the model of reflectivity. Recognizing that methods of artificial intelligence and Bayesian computation are finding an every increasing role in augmenting the process of interpretation and analysis of geophysical data, we derive a generalized matrix-variate model of reflectivity in terms of orthogonal basis functions, subject to sparse constraints. This supports a direct application of machine learning methods, in a way that can be mapped back onto the physical principles known to govern reflection seismology. As a demonstration we present an application of these methods to the Marcellus shale. Attributes extracted using the azimuthal inversion are clustered using an unsupervised learning algorithm. Interpretation of the clusters is performed in the context of the Ruger model of azimuthal AVO

    Exact and efficient top-K inference for multi-target prediction by querying separable linear relational models

    Get PDF
    Many complex multi-target prediction problems that concern large target spaces are characterised by a need for efficient prediction strategies that avoid the computation of predictions for all targets explicitly. Examples of such problems emerge in several subfields of machine learning, such as collaborative filtering, multi-label classification, dyadic prediction and biological network inference. In this article we analyse efficient and exact algorithms for computing the top-KK predictions in the above problem settings, using a general class of models that we refer to as separable linear relational models. We show how to use those inference algorithms, which are modifications of well-known information retrieval methods, in a variety of machine learning settings. Furthermore, we study the possibility of scoring items incompletely, while still retaining an exact top-K retrieval. Experimental results in several application domains reveal that the so-called threshold algorithm is very scalable, performing often many orders of magnitude more efficiently than the naive approach

    PATTERN: Pain Assessment for paTients who can't TEll using Restricted Boltzmann machiNe.

    Get PDF
    BackgroundAccurately assessing pain for those who cannot make self-report of pain, such as minimally responsive or severely brain-injured patients, is challenging. In this paper, we attempted to address this challenge by answering the following questions: (1) if the pain has dependency structures in electronic signals and if so, (2) how to apply this pattern in predicting the state of pain. To this end, we have been investigating and comparing the performance of several machine learning techniques.MethodsWe first adopted different strategies, in which the collected original n-dimensional numerical data were converted into binary data. Pain states are represented in binary format and bound with above binary features to construct (n + 1) -dimensional data. We then modeled the joint distribution over all variables in this data using the Restricted Boltzmann Machine (RBM).ResultsSeventy-eight pain data items were collected. Four individuals with the number of recorded labels larger than 1000 were used in the experiment. Number of avaliable data items for the four patients varied from 22 to 28. Discriminant RBM achieved better accuracy in all four experiments.ConclusionThe experimental results show that RBM models the distribution of our binary pain data well. We showed that discriminant RBM can be used in a classification task, and the initial result is advantageous over other classifiers such as support vector machine (SVM) using PCA representation and the LDA discriminant method

    Speculative Approximations for Terascale Analytics

    Full text link
    Model calibration is a major challenge faced by the plethora of statistical analytics packages that are increasingly used in Big Data applications. Identifying the optimal model parameters is a time-consuming process that has to be executed from scratch for every dataset/model combination even by experienced data scientists. We argue that the incapacity to evaluate multiple parameter configurations simultaneously and the lack of support to quickly identify sub-optimal configurations are the principal causes. In this paper, we develop two database-inspired techniques for efficient model calibration. Speculative parameter testing applies advanced parallel multi-query processing methods to evaluate several configurations concurrently. The number of configurations is determined adaptively at runtime, while the configurations themselves are extracted from a distribution that is continuously learned following a Bayesian process. Online aggregation is applied to identify sub-optimal configurations early in the processing by incrementally sampling the training dataset and estimating the objective function corresponding to each configuration. We design concurrent online aggregation estimators and define halting conditions to accurately and timely stop the execution. We apply the proposed techniques to distributed gradient descent optimization -- batch and incremental -- for support vector machines and logistic regression models. We implement the resulting solutions in GLADE PF-OLA -- a state-of-the-art Big Data analytics system -- and evaluate their performance over terascale-size synthetic and real datasets. The results confirm that as many as 32 configurations can be evaluated concurrently almost as fast as one, while sub-optimal configurations are detected accurately in as little as a 1/20th1/20^{\text{th}} fraction of the time
    • …
    corecore