50 research outputs found

    A Bang-Bang All-Digital PLL for Frequency Synthesis

    Get PDF
    abstract: Phase locked loops are an integral part of any electronic system that requires a clock signal and find use in a broad range of applications such as clock and data recovery circuits for high speed serial I/O and frequency synthesizers for RF transceivers and ADCs. Traditionally, PLLs have been primarily analog in nature and since the development of the charge pump PLL, they have almost exclusively been analog. Recently, however, much research has been focused on ADPLLs because of their scalability, flexibility and higher noise immunity. This research investigates some of the latest all-digital PLL architectures and discusses the qualities and tradeoffs of each. A highly flexible and scalable all-digital PLL based frequency synthesizer is implemented in 180 nm CMOS process. This implementation makes use of a binary phase detector, also commonly called a bang-bang phase detector, which has potential of use in high-speed, sub-micron processes due to the simplicity of the phase detector which can be implemented with a simple D flip flop. Due to the nonlinearity introduced by the phase detector, there are certain performance limitations. This architecture incorporates a separate frequency control loop which can alleviate some of these limitations, such as lock range and acquisition time.Dissertation/ThesisM.S. Electrical Engineering 201

    Clock Generator Circuits for Low-Power Heterogeneous Multiprocessor Systems-on-Chip

    Get PDF
    In this work concepts and circuits for local clock generation in low-power heterogeneous multiprocessor systems-on-chip (MPSoCs) are researched and developed. The targeted systems feature a globally asynchronous locally synchronous (GALS) clocking architecture and advanced power management functionality, as for example fine-grained ultra-fast dynamic voltage and frequency scaling (DVFS). To enable this functionality compact clock generators with low chip area, low power consumption, wide output frequency range and the capability for ultra-fast frequency changes are required. They are to be instantiated individually per core. For this purpose compact all digital phase-locked loop (ADPLL) frequency synthesizers are developed. The bang-bang ADPLL architecture is analyzed using a numerical system model and optimized for low jitter accumulation. A 65nm CMOS ADPLL is implemented, featuring a novel active current bias circuit which compensates the supply voltage and temperature sensitivity of the digitally controlled oscillator (DCO) for reduced digital tuning effort. Additionally, a 28nm ADPLL with a new ultra-fast lock-in scheme based on single-shot phase synchronization is proposed. The core clock is generated by an open-loop method using phase-switching between multi-phase DCO clocks at a fixed frequency. This allows instantaneous core frequency changes for ultra-fast DVFS without re-locking the closed loop ADPLL. The sensitivity of the open-loop clock generator with respect to phase mismatch is analyzed analytically and a compensation technique by cross-coupled inverter buffers is proposed. The clock generators show small area (0.0097mm2 (65nm), 0.00234mm2 (28nm)), low power consumption (2.7mW (65nm), 0.64mW (28nm)) and they provide core clock frequencies from 83MHz to 666MHz which can be changed instantaneously. The jitter performance is compliant to DDR2/DDR3 memory interface specifications. Additionally, high-speed clocks for novel serial on-chip data transceivers are generated. The ADPLL circuits have been verified successfully by 3 testchip implementations. They enable efficient realization of future low-power MPSoCs with advanced power management functionality in deep-submicron CMOS technologies.In dieser Arbeit werden Konzepte und Schaltungen zur lokalen Takterzeugung in heterogenen Multiprozessorsystemen (MPSoCs) mit geringer Verlustleistung erforscht und entwickelt. Diese Systeme besitzen eine global-asynchrone lokal-synchrone Architektur sowie Funktionalität zum Power Management, wie z.B. das feingranulare, schnelle Skalieren von Spannung und Taktfrequenz (DVFS). Um diese Funktionalität zu realisieren werden kompakte Taktgeneratoren benötigt, welche eine kleine Chipfläche einnehmen, wenig Verlustleitung aufnehmen, einen weiten Bereich an Ausgangsfrequenzen erzeugen und diese sehr schnell ändern können. Sie sollen individuell pro Prozessorkern integriert werden. Dazu werden kompakte volldigitale Phasenregelkreise (ADPLLs) entwickelt, wobei eine bang-bang ADPLL Architektur numerisch modelliert und für kleine Jitterakkumulation optimiert wird. Es wird eine 65nm CMOS ADPLL implementiert, welche eine neuartige Kompensationsschlatung für den digital gesteuerten Oszillator (DCO) zur Verringerung der Sensitivität bezüglich Versorgungsspannung und Temperatur beinhaltet. Zusätzlich wird eine 28nm CMOS ADPLL mit einer neuen Technik zum schnellen Einschwingen unter Nutzung eines Phasensynchronisierers realisiert. Der Prozessortakt wird durch ein neuartiges Phasenmultiplex- und Frequenzteilerverfahren erzeugt, welches es ermöglicht die Taktfrequenz sofort zu ändern um schnelles DVFS zu realisieren. Die Sensitivität dieses Frequenzgenerators bezüglich Phasen-Mismatch wird theoretisch analysiert und durch Verwendung von kreuzgekoppelten Taktverstärkern kompensiert. Die hier entwickelten Taktgeneratoren haben eine kleine Chipfläche (0.0097mm2 (65nm), 0.00234mm2 (28nm)) und Leistungsaufnahme (2.7mW (65nm), 0.64mW (28nm)). Sie stellen Frequenzen von 83MHz bis 666MHz bereit, welche sofort geändert werden können. Die Schaltungen erfüllen die Jitterspezifikationen von DDR2/DDR3 Speicherinterfaces. Zusätzliche können schnelle Takte für neuartige serielle on-Chip Verbindungen erzeugt werden. Die ADPLL Schaltungen wurden erfolgreich in 3 Testchips erprobt. Sie ermöglichen die effiziente Realisierung von zukünftigen MPSoCs mit Power Management in modernsten CMOS Technologien

    Towards Very Large Scale Analog (VLSA): Synthesizable Frequency Generation Circuits.

    Full text link
    Driven by advancement in integrated circuit design and fabrication technologies, electronic systems have become ubiquitous. This has been enabled powerful digital design tools that continue to shrink the design cost, time-to-market, and the size of digital circuits. Similarly, the manufacturing cost has been constantly declining for the last four decades due to CMOS scaling. However, analog systems have struggled to keep up with the unprecedented scaling of digital circuits. Even today, the majority of the analog circuit blocks are custom designed, do not scale well, and require long design cycles. This thesis analyzes the factors responsible for the slow scaling of analog blocks, and presents a new design methodology that bridges the gap between traditional custom analog design and the modern digital design. The proposed methodology is utilized in implementation of the frequency generation circuits – traditionally considered analog systems. Prototypes covering two different applications were implemented. The first synthesized all-digital phase-locked loop was designed for 400-460 MHz MedRadio applications and was fabricated in a 65 nm CMOS process. The second prototype is an ultra-low power, near-threshold 187-500 kHz clock generator for energy harvesting/autonomous applications. Finally, a digitally-controlled oscillator frequency resolution enhancement technique is presented which allows reduction of quantization noise in ADPLLs without introducing spurs.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/109027/1/mufaisal_1.pd

    저 잡음 디지털 위상동기루프의 합성

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 정덕균.As a device scaling proceeds, Charge Pump PLL has been confronted by many design challenges. Especially, a leakage current in loop filter and reduced dynamic range due to a lower operating voltage make it difficult to adopt a conventional analog PLL architecture for a highly scaled technology. To solve these issues, All Digital PLL (ADPLL) has been widely studied recently. ADPLL mitigates a filter leakage and a reduced dynamic range issues by replacing the analog circuits with digital ones. However, it is still difficult to get a low jitter under low supply voltage. In this thesis, we propose a dual loop architecture to achieve a low jitter even with a low supply voltage. And bottom-up based multi-step TDC and DCO are proposed to meet both fine resolution and wide operation range. In the aspect of design methodology, ADPLL has relied on a full custom design method although ADPLL is fully described in HDL (Hardware Description Language). We propose a new cell based layout technique to automatically synthesize the whole circuit and layout. The test chip has no linearity degradation although it is fully synthesized using a commercially available auto P&R tool. We has implemented an all digital pixel clock generator using the proposed dual loop architecture and the cell based layout technique. The entire circuit is automatically synthesized using 28nm CMOS technology. And s-domain linear model is utilized to optimize the jitter of the dual-loop PLL. Test chip occupies 0.032mm2, and achieves a 15ps_rms integrated jitter although it has extremely low input reference clock of 100 kHz. The whole circuit operates at 1.0V and consumes only 3.1mW.Abstract i Lists of Figures vii Lists of Tables xiii 1. Introduction 1 1.1 Thesis Motivation and Organization 1 1.1.1 Motivation 1 1.1.2 Thesis Organization 2 1.2 PLL Design Issues in Scaled CMOS Technology 3 1.2.1 Low Supply Voltage 4 1.2.2 High Leakage Current 6 1.2.3 Device Reliability: NBTI, HCI, TDDB, EM 8 1.2.4 Mismatch due to Proximity Effects: WPE, STI 11 1.3 Overview of Clock Synthesizers 14 1.3.1 Dual Voltage Charge Pump PLL 14 1.3.2 DLL Based Edge Combining Clock Multiplier 16 1.3.3 Recirculation DLL 17 1.3.4 Reference Injected PLL 18 1.3.5 All Digital PLL 19 1.3.6 Flying Adder Clock Synthesizer 20 1.3.7 Dual Loop Hybrid PLL 21 1.3.8 Comparisons 23 2. Tutorial of ADPLL Design 25 2.1 Introduction 25 2.1.1 Motivation for a pure digital 25 2.1.2 Conversion to digital domain 26 2.2 Functional Blocks 26 2.2.1 TDC, and PFD/Charge Pump 26 2.2.2 Digital Loop Filter and Analog R/C Loop Filter 29 2.2.3 DCO and VCO 34 2.2.4 S-domain Model of the Whole Loop 34 2.2.5 ADPLL Loop Design Flow 36 2.3 S-domain Noise Model 41 2.3.1 Noise Transfer Functions 41 2.3.2 Quantization Noise due to Limited TDC Resolution 45 2.3.3 Quantization Noise due to Divider ΔΣ Noise 46 2.3.4 Quantization Noise due to Limited DCO Resolution 47 2.3.5 Quantization Noise due to DCO ΔΣ Dithering 48 2.3.6 Random Noise of DCO and Input Clock 50 2.3.7 Over-all Phase Noise 50 3. Synthesizable All Digital Pixel Clock PLL Design 53 3.1 Overview 53 3.1.1 Introduction of Pixel Clock PLL 53 3.1.1 Design Specifications 55 3.2 Proposed Architecture 60 3.2.1 All Digital Dual Loop PLL 60 3.2.2 2-step controlled TDC 61 3.2.3 3-step controlled DCO 64 3.2.4 Digital Loop Filter 76 3.3 S-domain Noise Model 78 3.4 Loop Parameter Optimization Based on the s-domain Model 85 3.5 RTL and Gate Level Circuit Design 88 3.5.1 Overview of the design flow 88 3.5.2 Behavioral Simulation and Gate level synthesis 89 3.5.1 Preventing a meta-stability 90 3.5.1 Reusable Coding Style 92 3.6 Layout Synthesis 94 3.6.1 Auto P&R 94 3.6.2 Design of Unit Cells 97 3.6.3 Linearity Degradation in Synthesized TDC 98 3.6.4 Linearity Degradation in Synthesized DCO 106 3.7 Experiment Results 109 3.7.1 DCO measurement 109 3.7.2 PLL measurement 113 3.8 Conclusions 117 A. Device Technology Scaling Trends 118 A.1. Motivation for Technology Scaling 118 A.2. Constant Field Scaling 120 A.3. Quasi Constant Voltage Scaling 123 A.4. Device Technology Trends in Real World 124 B. Spice Simulation Tip for a DCO 137 C. Phase Noise to Jitter Conversion 141 Bibliography 144 초록 151Docto

    Digitally Controlled Oscillator for mm-Wave Frequencies

    Get PDF
    In the fifth generation of mobile communication, 5G, frequencies above 30 GHz, so-called millimeter-wave (mm-wave) frequencies are expected to play a prominent role. For the synthesis of these frequencies, the all-digital phase locked loop (ADPLL) has recently gained much attention. A core component of the ADPLL is the digitally controlled oscillator (DCO), an oscillator that tunes the frequency discretely. For good performance, the frequency steps must be made very small, while the total tuning range must be large. This thesis covers several coarse- and fine-tuning techniques for DCOs operating at mm-wave frequencies. Three previously not published fine-tuning schemes are presented: The first one tunes the second harmonic, which will, due to the Groszkowski effect, tune the fundamental tone. The second one is a current-modulation scheme, which utilizes the weak current-dependence of the capacitance of a transistor to tune the frequency. In the third one, a digital-to-analog converter (DAC) is connected to the bulk of the differential pair and tunes the frequency by setting the bulk voltage. The advantages and disadvantages of the presented tuning schemes are discussed and compared with previously reported fine-tuning schemes. Two oscillators were implemented at 86 GHz. Both oscillator use the same oscillator core and hence have the same power consumption and tuning range, 14.1 mW and 13.9%. A phase noise of -89.7 dBc/Hz and -111.4 dBc/Hz at 1 MHz and 10 MHz offset, respectively, were achieved, corresponding to a Figure-of-Merit of -178.5 dBc/Hz. The first oscillator is fine-tuned using a combination of a transformer-based fine-tuning and the current modulation scheme presented here. The achieved frequency resolution is 55 kHz, but can easily be made finer. The second oscillator utilizes the bulk bias technique to achieve its fine tuning. The fine-tuning resolution is here dependent on the resolution of the DAC; a 100μV resolution corresponds to a resolution of 50 kHz.n 2011, the global monthly mobile data usage was 0.5 exabytes, or 500 million gigabytes. In 2016, this number had increased to 7 exabytes, an increase by a factor 14 in just five years, and there are no signs of this trend slowing down. To meet the demands of the ever increasing data usage, engineers have begun to investigate the possibility to use significantly higher frequencies, 30 GHz or higher, for mobile communication than what is used today, which is 3 GHz or below. To be able to transmit and receive data at these high frequency, an oscillator capable of operating at these frequencies are required. An oscillator is an electrical circuit that generates an alternating current (a current that first goes one way, and then the other) at a specific frequency. Below is an example to illustrate to function and importance of the oscillator: Imagine driving a car and listening to the radio. Suddenly, a horrendous song starts playing from the radio, so you instantly tune to another station and find some great, smooth jazz. Satisfied, you lean back and drive on. But what exactly happened when you "tuned to another station"? What you really did was changing the frequency of the oscillator, which can be found in the radio receiver of the car. The radio receiver filters out all frequencies, except for the frequency of the local oscillator. So by setting the frequency of the local oscillator to the frequency of the desired radio channel, only this radio channel will reach the speakers of the car. Thus, the oscillator must be able to vary its frequency to any frequency that a radio station can transmit on. While an old car radio may seem like a simple example, the very same principle is used in mobile communication, even at frequencies above 30 GHz. The oscillator is also used in the same way when transmitting signals, so that the signals are transmitted on the correct frequency. The design of the local oscillator is a hot topic among radio engineers. A poorly designed oscillator will ruin the performance of the whole receiver or transmitter. This thesis covers the design of a special type of oscillators, called digital controlled oscillators or DCO, operating at 30 GHz or higher. The frequency of these oscillators are determined by a digital word (ones and zeros), instead of using an analog voltage, which is traditionally used. Digital control results in greater flexibility and higher noise-resilience, but it also means that the frequency can’t be changed continuously, but rather in discrete steps. This discrete behavior will cause noise in the receiver. To minimize this noise, the frequency steps should be minimized. In this thesis, we have proposed a DCO design, operating at 85.5 GHz, which can be tuned almost 7 % in either direction. To our knowledge, no other DCO operates at such high frequencies. In the proposed oscillators the frequency steps are only 55 kHz apart, which is so small that its effect on the radio receiver can, with a good conscience, be ignored. This is achieved with a novel technique that makes tiny, tiny changes in the current that passes through the oscillator

    Evolution of digitally controlled oscillator

    Get PDF
    Suvremeni razvoj uporabe digitalnih ili potpuno digitalnih ciklusa s faznim podešavanjem (PLLs) u različitim uređajima za komunikaciju vodi ka primjeni digitalno kontroliranog oscilatora (DCO). U ovom se preglednom članku daje razvoj DCO-a u modernim elektroničkim uređajima kao i njihovo funkcioniranje u lokalnim oscilatorima. Iako se implementacija DCO preferira u odnosu na analogne, i dalje se radi na poboljšanjima u potrošnji energije, brzini, veličini čipa, raspona frekvencije, ulaznog napona, prenosivosti i rezolucije. U radu se uglavnom opisuje razvoj od oscilatora kontroliranih voltažom (voltage controlled oscillators- VCO) do digitalno kontroliranih oscilatora za "deep-submicrometer CMOS" postupak. Fokus je na analizi i praćenju unapređenja DCO-a na razini funkcionalnosti.Current trend of using digital or all-digital phase-locked loops (PLLs) in various communication devices introduces the usage of digitally controlled oscillator (DCO). This review paper discusses the evolution of DCOs in modern electronic devices as well as their performances in local oscillators. Even though the DCO implementation is preferable to its analog counterpart, improvements are still going on to get high performances in terms of power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. This paper mainly describes the evolution of DCO, how it turns from a conventional VCO to DCO for deep-submicrometer CMOS process. The focus is to analyse and track the advances in DCO base on its performance level

    Millimeter-Wave CMOS Digitally Controlled Oscillators for Automotive Radars

    Get PDF
    All-Digital-Phase-Locked-Loops (ADPLLs) are ideal for integrated circuit implementations and effectively generate frequency chirps for Frequency-Modulated-Continuous-Wave (FMCW) radar. This dissertation discusses the design requirements for integrated ADPLL, which is used as chirp synthesizer for FMCW automotive radar and focuses on an analysis of the ADPLL performance based on the Digitally-Controlled-Oscillator (DCO) design parameters and the ADPLL configuration. The fundamental principles of the FMCW radar are reviewed and the importance of linear DCO for reliable operation of the synthesizer is discussed. A novel DCO, which achieves linear frequency tuning steps is designed by arranging the available minimum Metal-Oxide-Metal (MoM) capacitor in unique confconfigurations. The DCO prototype fabricated in 65 nm CMOS fullls the requirements of the 77 GHz automotive radar. The resultant linear DCO characterization can effectively drive a chirp generation system in complete FMCW automotive radar synthesizer

    Evolution of digitally controlled oscillator

    Get PDF
    Suvremeni razvoj uporabe digitalnih ili potpuno digitalnih ciklusa s faznim podešavanjem (PLLs) u različitim uređajima za komunikaciju vodi ka primjeni digitalno kontroliranog oscilatora (DCO). U ovom se preglednom članku daje razvoj DCO-a u modernim elektroničkim uređajima kao i njihovo funkcioniranje u lokalnim oscilatorima. Iako se implementacija DCO preferira u odnosu na analogne, i dalje se radi na poboljšanjima u potrošnji energije, brzini, veličini čipa, raspona frekvencije, ulaznog napona, prenosivosti i rezolucije. U radu se uglavnom opisuje razvoj od oscilatora kontroliranih voltažom (voltage controlled oscillators- VCO) do digitalno kontroliranih oscilatora za "deep-submicrometer CMOS" postupak. Fokus je na analizi i praćenju unapređenja DCO-a na razini funkcionalnosti.Current trend of using digital or all-digital phase-locked loops (PLLs) in various communication devices introduces the usage of digitally controlled oscillator (DCO). This review paper discusses the evolution of DCOs in modern electronic devices as well as their performances in local oscillators. Even though the DCO implementation is preferable to its analog counterpart, improvements are still going on to get high performances in terms of power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. This paper mainly describes the evolution of DCO, how it turns from a conventional VCO to DCO for deep-submicrometer CMOS process. The focus is to analyse and track the advances in DCO base on its performance level
    corecore