246 research outputs found

    Multi-resonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions

    Get PDF
    This paper presents a new multiresonant frequencyadaptive synchronization method for grid-connected power converters that allows estimating not only the positive- and negative-sequence components of the power signal at the fundamental frequency but also other sequence components at other harmonic frequencies. The proposed system is calledMSOGI-FLL since it is based on both a harmonic decoupling network consisting of multiple second-order generalized integrators (MSOGIs) and a frequency-locked loop (FLL), which makes the system frequency adaptive. In this paper, the MSOGI-FLL is analyzed for singleand three-phase applications, deducing some key expressions regarding its stability and tuning. Moreover, the performance of the MSOGI-FLL is evaluated by both simulations and experiments to show its capability for detecting different harmonic components in a highly polluted grid scenario.Peer ReviewedPostprint (published version

    Universal Grid-forming Method for Future Power Systems

    Get PDF
    Power system inertia typically refers to the energy stored in large rotating synchronous generators. Dynamics and stability of the traditional power system is closely linked to the natural inertia of these synchronous generators. In recent years, increasing amount of synchronous generators have been replaced by high amount of different type of inverter-based generating units connected at different voltage levels of the power system. Therefore, the dynamics and stability of future low-inertia power systems will be increasingly dominated by the control and synchronization of these inverter-based resources. One essential issue is that the typical grid-following control with phase-locked-loop (PLL) -based synchronization of inverter-based generation is not enough to guarantee frequency stability in future low-inertia power systems. Therefore, different grid-forming inverter control and synchronization methods have been proposed and developed. Currently there does not exist any universal grid-forming control and synchronization method. Therefore, this paper tries to propose a new universal frequency-locked-loop (U-FLL) -based synchronization method which is grid-forming for inverter-based generating units and grid-supporting for inverter-based loads. Advantageous operation of the new U-FLL synchronization and control strategy is confirmed by multiple simulations with different shares of inverter-based resources and synchronous generators in MV and HV hybrid power systems as well as with 100 % inverter-based LV, MV and HV networks.©2022 the Author. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    Synchronization Stability of Grid-Connected Converters under Grid Faults

    Get PDF

    Solutions to Improve Transient Stability of Universal Grid-forming Inverter-based Resources

    Get PDF
    In the future power grids, the share of grid-forming inverter-based resources must be increased in order to guarantee stability of the power system during rapid changes in generation, consumption and network topology. Therefore, it is important that the behavior and response of grid-forming inverters is also stable during different types of operation modes, events and faults. Previously, frequency stability improvement of grid-forming battery energy storages with universal frequency-locked-loop after load change in small HV network has been studied. However, in this paper the focus is on more severe disturbances i.e. unbalanced 2-phase and balanced 3-phase faults that are typically most challenging for the different synchronization methods. In this paper, based on multiple PSCAD simulations, new solutions are proposed to improve the transient frequency and voltage stability and fault-ride-through capability of grid-forming inverter-based resources with universal frequency-locked-loop during and after unbalanced and balanced faults.© 2023 The Authors. Published by Praise Worthy Prize S.r.l. This article is open access published under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/) Available online by June 30th, 2023.fi=vertaisarvioitu|en=peerReviewed

    Distributed synchronization algorithms for wireless sensor networks

    Get PDF
    The ability to distribute time and frequency among a large population of interacting agents is of interest for diverse disciplines, inasmuch as it enables to carry out complex cooperative tasks. In a wireless sensor network (WSN), time/frequency synchronization allows the implementation of distributed signal processing and coding techniques, and the realization of coordinated access to the shared wireless medium. Large multi-hop WSN\u27s constitute a new regime for network synchronization, as they call for the development of scalable, fully distributed synchronization algorithms. While most of previous research focused on synchronization at the application layer, this thesis considers synchronization at the lowest layers of the communication protocol stack of a WSN, namely the physical and the medium access control (MAC) layer. At the physical layer, the focus is on the compensation of carrier frequency offsets (CFO), while time synchronization is studied for application at the MAC layer. In both cases, the problem of realizing network-wide synchronization is approached by employing distributed clock control algorithms based on the classical concept of coupled phase and frequency locked loops (PLL and FLL). The analysis takes into account communication, signaling and energy consumption constraints arising in the novel context of multi-hop WSN\u27s. In particular, the robustness of the algorithms is checked against packet collision events, infrequent sync updates, and errors introduced by different noise sources, such as transmission delays and clock frequency instabilities. By observing that WSN\u27s allow for greater flexibility in the design of the synchronization network architecture, this work examines also the relative merits of both peer-to-peer (mutually coupled - MC) and hierarchical (master-slave - MS) architectures. With both MC and MS architectures, synchronization accuracy degrades smoothly with the network size, provided that loop parameters are conveniently chosen. In particular, MS topologies guarantee faster synchronization, but they are hindered by higher noise accumulation, while MC topologies allow for an almost uniform error distribution at the price of much slower convergence. For all the considered cases, synchronization algorithms based on adaptive PLL and FLL designs are shown to provide robust and scalable network-wide time and frequency distribution in a WSN

    Control strategy of grid connected power converter based on virtual flux approach

    Get PDF
    A la portada consta el nom del programa interuniversitari: Joint Doctoral Programme in Electric Energy Systems [by the] Universidad de Málaga, Universidad de Sevilla, Universidad del País Vasco/Euskal Erriko Unibertsitatea i Universitat Politècnica de CatalunyaDistributed Generation (DG) provides an alternative to the Centralized Generation (CG) by means of generating electricity near to the end user of power with the employment of small-scale technologies to produce electricity, mainly using Renewable Energy Sources (RES). The prospects of renewable energy integration during the next years are still very optimistic. This PhD dissertation is made to provide an alternative control framework for the grid connected power converter by adopting the virtual flux concept in the control layer. This dissertation can be divided into three main topics. The 1st topic presents the voltage sensorless control system for the grid-connected power converter. The control system presented is done without depending on AC-voltage measurement where the grid synchronization is based on the Virtual Flux (VF) estimation. In this regard, the Frequency Locked Loop (FLL) is used in conjunction with the estimation scheme to make the system fully adaptive to the frequency changes. This voltage sensorless application is useful for reducing cost and complexity of the control hardware. It is also can be utilized in case of limited reliability or availability of voltage measurements at the intended point of synchronization to the grid. Considering that most previous studies are based on the VF estimation for the case of power converter connected to the grid through the L-filter or LC-filter, this dissertation is focused on the power converter connected to the grid through the LCL filter. The Proportional Resonant (PR) current controller is adopted in the inner loop control of the power electronics-based converter to test the performance of such system. Another control method based on VF synchronization that permits to control the active and reactive power delivery in a remote point of the grid is also presented in this dissertation. This is due to the fact that the VF is implemented that the voltage in a remote point of the line can be estimated. As it will be shown in simulations and experiments, the proposed control scheme provides a good tracking and dynamic performance under step changes in the reference power. The fast synchronization and the smooth reference tracking achieved in transient conditions have demonstrated the effectiveness of the Dual Second Order Generalized Integrator controlled as Quadrature Signal Generator (DSOGI-QSG) and also the current controller used in the proposed system. In addition to the power control itself, this study could also benefit the frequency and the voltage regulation methods in distributed generation applications as for instance in microgrid. Considering the fact that the grid connected power converter can be controlled as a virtual synchronous generator where the flux is a variable to be used for controlling its operation, this dissertation also presents a Virtual Synchronous Flux Controller (VSFC) as a new control framework of the grid connected power converter. In this regard, a new control strategy in the inner loop control of the power converter will be proposed. The main components of the outer loop control of VSFC are based on the active and reactive power control. The results presented show that the VSFC works well to control the active and reactive power without considering any synchronization system. The inner loop control is able to work as it is required, and the measurement flux is able to track the reference flux without any significant delays. All the work presented in this dissertation are supported by mathematical and simulation analysis. In order to endorse the conclusions achieved, a complete experimental validations have been conducted before wrapping this dissertation with a conclusion and recommendation for future enhancement of the control strategies that have been presented.Postprint (published version

    Stability Analysis of Fully Power Converter-based Microgrids

    Get PDF
    Due to rising energy demand and climate crisis, distributed energy generation utilizing the renewable energy resource is constantly evolving. Generation near the electrical loads within a defined boundary forms a microgrid. It can be operated by connecting with utility-grid or as a stand-alone system. Solar and wind energy resources use a power-electronic converter to interface with the load or grid. The fast dynamics of the converter is very different from the inertial dynamics of the grid with large synchronous machines. Furthermore, low short-circuit capacity, more resistive network and unbalanced loading are few inherent characteristics concerning the operational reliability of the microgrid. This thesis aims to present the various issues with fully power converter-based microgrids in terms of stability and protection. High-power converters with LCL-filter are simulated under various operating conditions in typhoon real-time simulator. A relay function is used to detect the unstable operating points. High resistance-to-reactance ratio in the low-voltage line forms active-reactive power coupling, making the conventional droop control inaccurate. For a disturbance, droop control allows a steep voltage or frequency deviations which lead to unnecessary protection tripping. Use of virtual inertia control avoids the steep change in the system variables and preserves the stability. Parallel droop-based converters with non-identical parameters or output impedance induce circulating current or reactive power oscillations. Use of virtual impedance control minimizes the circulating current and enhances power-sharing. Phase-locked loop synchronized with a weak grid (high-impedance grid) is unstable on large-signal disturbances. Current-reference saturation limits the converter current for a three-phase balanced fault condition. For higher fault-impedance, the fault current is nearly equal to the load current, which possibly blinds the microgrid protection

    Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems

    Get PDF
    corecore