2,967 research outputs found

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    A Review on MR Image Intensity Inhomogeneity Correction

    Get PDF
    Intensity inhomogeneity (IIH) is often encountered in MR imaging, and a number of techniques have been devised to correct this artifact. This paper attempts to review some of the recent developments in the mathematical modeling of IIH field. Low-frequency models are widely used, but they tend to corrupt the low-frequency components of the tissue. Hypersurface models and statistical models can be adaptive to the image and generally more stable, but they are also generally more complex and consume more computer memory and CPU time. They are often formulated together with image segmentation within one framework and the overall performance is highly dependent on the segmentation process. Beside these three popular models, this paper also summarizes other techniques based on different principles. In addition, the issue of quantitative evaluation and comparative study are discussed

    Segmentation of brain MRI during early childhood

    No full text
    The objective of this thesis is the development of automatic methods to measure the changes in volume and growth of brain structures in prematurely born infants. Automatic tools for accurate tissue quantification from magnetic resonance images can provide means for understanding how the neurodevelopmental effects of the premature birth, such as cognitive, neurological or behavioural impairment, are related to underlying changes in brain anatomy. Understanding these changes forms a basis for development of suitable treatments to improve the outcomes of premature birth. In this thesis we focus on the segmentation of brain structures from magnetic resonance images during early childhood. Most of the current brain segmentation techniques have been focused on the segmentation of adult or neonatal brains. As a result of rapid development, the brain anatomy during early childhood differs from anatomy of both adult and neonatal brains and therefore requires adaptations of available techniques to produce good results. To address the issue of anatomical differences of the brain during early childhood compared to other age-groups, population-specific deformable and probabilistic atlases are introduced. A method for generation of population-specific prior information in form of a probabilistic atlas is proposed and used to enhance existing segmentation algorithms. The evaluation of registration-based and intensity-based approaches shows the techniques to be complementary in the quality of automatic segmentation in different parts of the brain. We propose a novel robust segmentation method combining the advantages of both approaches. The method is based on multiple label propagation using B-spline non-rigid registration followed by EM segmentation. Intensity inhomogeneity is a shading artefact resulting from the acquisition process, which significantly affects modern high resolution MR data acquired at higher magnetic field strengths. A novel template based method focused on correcting the intensity inhomogeneity in data acquired at higher magnetic field strengths is therefore proposed. The proposed segmentation method combined with proposed intensity inhomogeneity correction method offers a robust tool for quantification of volumes and growth of brain structures during early childhood. The tool have been applied to 67 T1-weigted images of subject at one and two years of age

    Improving foetal and neonatal echo-planar imaging with image-based shimming

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015O Developing Human Connectome Project pretende realizar um progresso científico único através da criação do primeiro connectome 4D no início da vida do bebé. De forma a criar um mapa dinâmico da conectividade do cérebro do bebé, é fundamental obter imagens funcionais e com ponderação em difusão. A imagem eco-planar (EPI) é a principal sequência de ressonância magnética aplicada na aquisição dessa informação. Esta sequência permite uma aquisição rápida e repetida de imagens cerebrais permitindo mapear as flutuações da atividade cerebral (imagiologia funcional) bem como ter uma boa resolução nas imagens de difusão (movimento de moléculas de água no volume cerebral). No entanto, esta técnica está associada a artefactos de suscetibilidade. Estes artefactos surgem quando existem interfaces entre duas amostras com suscetibilidades magnéticas diferentes como sejam o tecido biológico e o ar. De forma a minimizar esses artefactos é necessário reduzir as heterogeneidades do campo magnético principal B0 através de shimming. O presente trabalho focou-se em shimming ativo, no qual o campo magnético é mapeado com base num modelo composto por funções harmónicas esféricas e são calculadas as correntes a aplicar às bobinas de shimming. Essas bobinas geram um campo magnético que compensa as heterogeneidades presentes anteriormente. Convencionalmente, as tentativas para superar este problema envolvem a utilização do método disponibilizado no sistema de ressonância magnética, nas quais o campo é mapeado com base em projecções (ex: FASTMAP). Este método é de execução rápida mas apresenta duas desvantagens principais: em primeiro lugar, o utilizador tem um controlo reduzido sobre o processo; em segundo, as regiões nas quais o campo é mapeado não são definidas com base na anatomia de interesse. No contexto deste trabalho, o controlo sobre o processo é importante no sentido de ser possível aplicar exatamente a mesma metodologia a um grupo elevado de sujeitos. Por seu lado, o mapeamento com base na anatomia permite obter uma optimização mais precisa. Com o surgimento de novas tecnologias passou a ser possível fazer um mapeamento mais detalhado do campo magnético com técnicas baseadas em imagem ao invés de projecções. Estas técnicas envolvem a definição de um volume relacionado com a anatomia, e que é incluído na totalidade na optimização do campo. O principal objetivo deste trabalho foi desenvolver uma ferramenta de shimming baseado em imagem a fim de otimizar o campo magnético no contexto de imagens de EPI do cérebro neonatal e fetal. O cérebro do bebé sofre alterações na sua dimensão e forma durante o seu desenvolvimento desde a idade fetal até neonatal. Em cada uma dessas fases o bebé encontra-se cercado por um ambiente diferente que requere uma abordagem específica ao mesmo. Neste sentido, o trabalho desenvolvido foi dividido em três partes principais: descrição da estrutura necessária para a correta aplicação do shimming, shimming neonatal e shimming fetal. Em primeiro lugar, as limitações do shimming baseado em imagem foram estudadas e o algoritmo básico para aplicar o método foi testado. Nesta parte do trabalho foi demonstrado que os campos gerados pelas bobinas de shim presentes no equipamento de ressonância magnética são consistentes com as funções harmónicas esféricas que compõem o modelo aplicado. O efeito do movimento da cama do equipamento sobre a eficiência do shimming foi também estudada. Foi possível corrigir a informação do sistema de coordenadas que descrevem o mapa de campo B0 de forma a incluir o movimento da cama necessário para a obtenção das imagens em sujeitos fetais. A segunda parte do trabalho focou-se no desenvolvimento do shimming para o caso neonatal. Foi desenvolvida uma ferramenta para definição de uma região de interesse, unwrapping da fase e cálculo das correntes de shim. Esta foi desenvolvida em ambiente MATLAB. Nos recém-nascidos o shimming deve ser aplicado numa região de interesse restrita ao cérebro devido à presença da interface ar/tecido no escalpe do bebé. Assim, a definição da região de interesse consistiu principalmente na aplicação de um limiar a fim de binarizar a imagem de magnitude, ajustada pelo utilizador. Em simultâneo foi implementada uma técnica de exclusão dos olhos com base na anatomia dos diferentes planos. No seu conjunto o método apresentou-se flexível de forma a ser ajustado ao sujeito em estudo. Quando aplicado com a mesma metodologia (limiar e exclusão de olhos) o volume incluído foi semelhante entre bebés. O método de shimming foi avaliado com base em três medidas de dispersão do mapa de campo residual: largura a meia altura, desvio padrão dos pixéis no interior da região de interesse e o intervalo de frequências no interior do qual 95 % dos pixéis se encontravam. A utilização de diferentes medidas permitiu a avaliação do m´etodo em relação a diferentes aspetos. Este método foi aplicado a 52 participantes recém-nascidos com idade gestacional média de 39.8 ± 1.7 semanas. O cálculo das correntes de shim permitiu gerar um campo magnético que melhorou a homogeneidade do campo B0 no volume adquirido, sendo consistente com o previsto. Uma imagem média do campo residual foi calculada mostrando que existem duas regiões (occipital e pequenas regiões laterais) nas quais o campo magnético B0 apresenta ainda heterogeneidades. Por fim, os resultados indicam que este método melhorou o campo perto da periferia do cérebro quando comparado com o método convencional disponibilizado no equipamento. O shimming neonatal (shimming ótimo ou OIBS) foi utilizado como alicerce para a implementação de um método ajustado às características das aquisições fetais. Existem duas características principais que devem ser tidas em conta. Em primeiro lugar, os fetos encontram-se envoltos em líquido amniótico e tecido materno pelo que o ambiente no qual estão inseridos permite que a região de interesse seja definida de forma menos restrita. Em segundo lugar, o facto de a cabeça do feto ser pequena pode levar à existência de valores de corrente das bobinas de shim elevados. Essas correntes, principalmente associadas às bobinas de segunda ordem geram campos de magnitude elevada na região do tecido adiposo, o que altera a sua frequência de ressonância. Desta forma, as técnicas de supressão de gordura específicas em frequência são menos efetivas e a imagem de EPI apresenta artefactos. Assim, a ferramenta para shimming fetal incluiu a definição de uma região de interesse cilíndrica e um método de shimming baseado em imagem com limites lineares (shimming limitado ou CIBS) impostos com base na frequência de ressonância do tecido adiposo. O CIBS consistiu na aplicação de limites superiores e inferiores ([-300 100] Hz) para a frequência dos pixéis pertencentes à gordura após a aplicação do shimming. Adicionalmente, o impulso de radiofrequência utilizado para a supressão de gordura foi estudado a fim o otimizar para a sua utilização no contexto do shimming fetal. Para o estudo dos parâmetros do impulso de radiofrequência, os rins de dois voluntários adultos saudáveis foram utilizados como simulação do ambiente fetal, devido as semelhanças entre a localização e interface entre tecidos. Os métodos OIBS e CIBS foram aplicados em 6 grávidas saudáveis com idades gestacional média de 28±6 semanas. Os mapas de campo residuais mostraram que as técnicas eram semelhantes em termos de homogeneidade no interior da região de interesse definida como cérebro, mas a segunda (CIBS) apresentou melhores resultados na supressão de gordura. Como estudo do impulso de radiofrequência foi demonstrado que o desvio do impulso em cerca de 100 Hz no sentido da frequência de ressonância da água melhoraria a supressão de gordura sem detrimento do sinal da água. A utilização do novo método CIBS em simultâneo com um impulso de radiofrequência otimizado mostrou ser a melhor solução para homogeneizar o campo e suprimir a gordura. Em conclusão, as ferramentas apresentadas permitiram melhorar a qualidade das imagens de EPI da cabeça do feto e do recém-nascido no contexto do Developing Human Connectome Project. O shimming neonatal mostrou ser um método consistente que pode facilmente ser utilizado por parte da equipa clínica. A nível fetal foi apresentado um método que demonstra a capacidade de superar as limitações demonstradas pelas técnicas convencionais.The Developing Human Connectome Project (dHCP) aims to make major scientific progress by creating the first 4-dimensional connectome of early life. Echo planar imaging (EPI) is the main acquisition technique applied in functional and diffusion imaging, which are central to map the human brain. This technique allows fast acquisition of spatial information enabling volumetric coverage of the whole brain, but it is associated with susceptibility artefacts. In order to minimize those artefacts it is necessary to reduce main magnetic field B0 in homogeneities through shimming. Conventionally, the attempts to overcome this problem use the manufacturer’s default method. Unfortunately, with those techniques the user has little control over the process, and the regions within which the field is corrected are not anatomically based. The main objective of this project was to develop an image-based shimming tool to optimize the magnetic field in the context of EPI images adjusted to the neonatal and foetal brains. The babies’ brain suffers changes in dimension and shape during its development from foetal to neonatal age. In each one of those stages the baby is surrounded by a different environment which requires a distinct shimming approach. As a result, the work was divided into three main parts: framework description, neonatal shimming and foetal shimming. First, the limitations of image-based shimming were investigated, and the framework to apply the method was described. It was demonstrated that fields generated by shim coils were consistent with the spherical harmonic model applied. In addition, the coordinate information of the B0 field map was corrected in order to include the table displacement needed for foetal imaging. Second, a tool was developed for neonatal shimming. The tool included region-of-interest (ROI) definition, phase unwrapping and shim calculation. The ROI definition implemented was flexible in order to adjust to each subject under study. When applying this approach while keeping the same threshold/eye exclusion methodology the volume included was similar between babies. The shim calculation allowed to generate shim values that improved homogeneity of the magnetic field within the volume imaged. This method slightly improved the field near the brain’s margins when compared with the manufacturer’s default techniques. Finally, for foetal shimming the groundwork of the neonatal tool was adjusted to this cohort characteristics. The tool for foetal shimming included additional cylindrical ROI definition and constrained image-based shimming. The constrained shimming allowed to account for the mother’s adipose tissue which in the presence of high shim values can lead to imperfect fat suppression. Along with the implementation of shimming tools, the radio frequency pulse used for fat suppression was studied. The new constrained image-based shimming showed similar results in terms of field homogeneity within the fetus’ brain when compared with the optimal image based shimming, with improvement of fat suppression that is enhanced when simultaneously used with the optimized fat suppression radiofrequency pulse

    Improvements in the registration of multimodal medical imaging : application to intensity inhomogeneity and partial volume corrections

    Get PDF
    Alignment or registration of medical images has a relevant role on clinical diagnostic and treatment decisions as well as in research settings. With the advent of new technologies for multimodal imaging, robust registration of functional and anatomical information is still a challenge, particular in small-animal imaging given the lesser structural content of certain anatomical parts, such as the brain, than in humans. Besides, patient-dependent and acquisition artefacts affecting the images information content further complicate registration, as is the case of intensity inhomogeneities (IIH) showing in MRI and the partial volume effect (PVE) attached to PET imaging. Reference methods exist for accurate image registration but their performance is severely deteriorated in situations involving little images Overlap. While several approaches to IIH and PVE correction exist these methods still do not guarantee or rely on robust registration. This Thesis focuses on overcoming current limitations af registration to enable novel IIH and PVE correction methods.El registre d'imatges mèdiques té un paper rellevant en les decisions de diagnòstic i tractament clíniques així com en la recerca. Amb el desenvolupament de noves tecnologies d'imatge multimodal, el registre robust d'informació funcional i anatòmica és encara avui un repte, en particular, en imatge de petit animal amb un menor contingut estructural que en humans de certes parts anatòmiques com el cervell. A més, els artefactes induïts pel propi pacient i per la tècnica d'adquisició que afecten el contingut d'informació de les imatges complica encara més el procés de registre. És el cas de les inhomogeneïtats d'intensitat (IIH) que apareixen a les RM i de l'efecte de volum parcial (PVE) característic en PET. Tot i que existeixen mètodes de referència pel registre acurat d'imatges la seva eficàcia es veu greument minvada en casos de poc solapament entre les imatges. De la mateixa manera, també existeixen mètodes per la correcció d'IIH i de PVE però que no garanteixen o que requereixen un registre robust. Aquesta tesi es centra en superar aquestes limitacions sobre el registre per habilitar nous mètodes per la correcció d'IIH i de PVE

    Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error

    Get PDF
    This work presents a new algorithm (nonuniform intensity correction; NIC) for correction of intensity inhomogeneities in T1-weighted magnetic resonance (MR) images. The bias field and a bias-free image are obtained through an iterative process that uses brain tissue segmentation. The algorithm was validated by means of realistic phantom images and a set of 24 real images. The first evaluation phase was based on a public domain phantom dataset, used previously to assess bias field correction algorithms. NIC performed similar to previously described methods in removing the bias field from phantom images, without introduction of degradation in the absence of intensity inhomogeneity. The real image dataset was used to compare the performance of this new algorithm to that of other widely used methods (N3, SPM'99, and SPM2). This dataset included both low and high bias field images from two different MR scanners of low (0.5 T) and medium (1.5 T) static fields. Using standard quality criteria for determining the goodness of the different methods, NIC achieved the best results, correcting the images of the real MR dataset, enabling its systematic use in images from both low and medium static field MR scanners. A limitation of our method is that it might fail if the bias field is so high that the initial histogram does not show bimodal distribution for white and gray matterPublicad

    Automatic Spatial Calibration of Ultra-Low-Field MRI for High-Accuracy Hybrid MEG--MRI

    Full text link
    With a hybrid MEG--MRI device that uses the same sensors for both modalities, the co-registration of MRI and MEG data can be replaced by an automatic calibration step. Based on the highly accurate signal model of ultra-low-field (ULF) MRI, we introduce a calibration method that eliminates the error sources of traditional co-registration. The signal model includes complex sensitivity profiles of the superconducting pickup coils. In ULF MRI, the profiles are independent of the sample and therefore well-defined. In the most basic form, the spatial information of the profiles, captured in parallel ULF-MR acquisitions, is used to find the exact coordinate transformation required. We assessed our calibration method by simulations assuming a helmet-shaped pickup-coil-array geometry. Using a carefully constructed objective function and sufficient approximations, even with low-SNR images, sub-voxel and sub-millimeter calibration accuracy was achieved. After the calibration, distortion-free MRI and high spatial accuracy for MEG source localization can be achieved. For an accurate sensor-array geometry, the co-registration and associated errors are eliminated, and the positional error can be reduced to a negligible level.Comment: 11 pages, 8 figures. This work is part of the BREAKBEN project and has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 68686
    corecore