5,847 research outputs found

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page

    Experimental and Numerical Investigation of Post-Flutter Limit Cycle Oscillations on a Cantilevered Flat Plate

    Get PDF
    Futuristic aircraft designs and novel aircraft such as High Altitude Long Endurance (HALE) involve a higher level of structural flexibility than in conventional aircraft. Even at present, the trends in the aviation industry are to increase wing length (to reduce induced drag) and maxi- mize use of composites, which lead to increased structural flexibility. This necessitates a rethink of conventional (linear) aeroelastic analysis, since the increased flexibility results in coupling between the flight dynamic and aeroelastic dynamics, and consequently, limit-cycle oscillations of the structure. In this paper, a new three-dimensional low-order model for unsteady aerody- namics that accounts for large oscillation amplitudes and nonplanar wakes is developed. An experiment with a cantilevered flat plate at low Reynolds number is set up and used to validate the low-order model, as well as to study post-flutter limit-cycle oscillations. Results from the low-order model are promising, but show that aerodynamic nonlinearities such as flow sepa- ration and leading-edge vortex shedding must also be modeled in order to predict all possible limit-cycle oscillations of the aeroelastic system

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project
    • …
    corecore