1,969 research outputs found

    On An Improved Parallel Construction Of Suffix Arrays For Low Bandwidth Pc-Cluster.

    Get PDF
    An algorithm for the parallel construction of suffix arrays generation for any texts with larger alphabet size on distributed memory architecture is presente

    A New Multi-threaded and Interleaving Approach to Enhance String Matching for Intrusion Detection Systems

    Get PDF
    String matching algorithms are computationally intensive operations in computer science. The algorithms find the occurrences of one or more strings patterns in a larger string or text. String matching algorithms are important for network security, biomedical applications, Web search, and social networks. Nowadays, the high network speeds and large storage capacity put a high requirement on string matching methods to perform the task in a short time. Traditionally, Aho-Corasick algorithm, which is used to find the string matches, is executed sequentially. In this paper, a new multi-threaded and interleaving approach of Aho-Corasick using graphics processing units (GPUs) is designed and implemented to achieve high-speed string matching. Compute Unified Device Architecture (CUDA) programming language is used to implement the proposed parallel version. Experimental results show that our approach achieves more than 5X speedup over the sequential and other parallel implementations. Hence, a wide range of applications can benefit from our solution to perform string matching faster than ever before

    An Elegant Algorithm for the Construction of Suffix Arrays

    Get PDF
    The suffix array is a data structure that finds numerous applications in string processing problems for both linguistic texts and biological data. It has been introduced as a memory efficient alternative for suffix trees. The suffix array consists of the sorted suffixes of a string. There are several linear time suffix array construction algorithms (SACAs) known in the literature. However, one of the fastest algorithms in practice has a worst case run time of O(n2)O(n^2). The problem of designing practically and theoretically efficient techniques remains open. In this paper we present an elegant algorithm for suffix array construction which takes linear time with high probability; the probability is on the space of all possible inputs. Our algorithm is one of the simplest of the known SACAs and it opens up a new dimension of suffix array construction that has not been explored until now. Our algorithm is easily parallelizable. We offer parallel implementations on various parallel models of computing. We prove a lemma on the \ell-mers of a random string which might find independent applications. We also present another algorithm that utilizes the above algorithm. This algorithm is called RadixSA and has a worst case run time of O(nlogn)O(n\log{n}). RadixSA introduces an idea that may find independent applications as a speedup technique for other SACAs. An empirical comparison of RadixSA with other algorithms on various datasets reveals that our algorithm is one of the fastest algorithms to date. The C++ source code is freely available at http://www.engr.uconn.edu/~man09004/radixSA.zi
    corecore