410 research outputs found

    ART and ARTMAP Neural Networks for Applications: Self-Organizing Learning, Recognition, and Prediction

    Full text link
    ART and ARTMAP neural networks for adaptive recognition and prediction have been applied to a variety of problems. Applications include parts design retrieval at the Boeing Company, automatic mapping from remote sensing satellite measurements, medical database prediction, and robot vision. This chapter features a self-contained introduction to ART and ARTMAP dynamics and a complete algorithm for applications. Computational properties of these networks are illustrated by means of remote sensing and medical database examples. The basic ART and ARTMAP networks feature winner-take-all (WTA) competitive coding, which groups inputs into discrete recognition categories. WTA coding in these networks enables fast learning, that allows the network to encode important rare cases but that may lead to inefficient category proliferation with noisy training inputs. This problem is partially solved by ART-EMAP, which use WTA coding for learning but distributed category representations for test-set prediction. In medical database prediction problems, which often feature inconsistent training input predictions, the ARTMAP-IC network further improves ARTMAP performance with distributed prediction, category instance counting, and a new search algorithm. A recently developed family of ART models (dART and dARTMAP) retains stable coding, recognition, and prediction, but allows arbitrarily distributed category representation during learning as well as performance.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    Art Neural Networks for Remote Sensing: Vegetation Classification from Landsat TM and Terrain Data

    Full text link
    A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on the fuzzy ARTMAP neural network, is developed. System capabilities are tested on a challenging remote sensing classification problem, using spectral and terrain features for vegetation classification in the Cleveland National Forest. After training at the pixel level, system performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, as well as back propagation neural networks and K Nearest Neighbor algorithms. ARTMAP dynamics are fast, stable, and scalable, overcoming common limitations of back propagation, which did not give satisfactory performance. Best results are obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. A prototype remote sensing example introduces each aspect of data processing and fuzzy ARTMAP classification. The example shows how the network automatically constructs a minimal number of recognition categories to meet accuracy criteria. A voting strategy improves prediction and assigns confidence estimates by training the system several times on different orderings of an input set.National Science Foundation (IRI 94-01659, SBR 93-00633); Office of Naval Research (N00014-95-l-0409, N00014-95-0657

    Distributed ART Networks for Learning, Recognition, and Prediction

    Full text link
    Adaptive resonance theory (ART) models have been used for learning and prediction in a wide variety of applications. Winner-take-all coding allows these networks to maintain stable memories, but this type of code representation can cause problems such as category proliferation with fast learning and a noisy training set. A new class of ART models with an arbitrarily distributed code representation is outlined here. With winner-take-all coding, the unsupervised distributed ART model (dART) reduces to fuzzy ART and the supervised distributed ARTMAP model (dARTMAP) reduces to fuzzy ARTMAP. dART automatically apportions learned changes according to the degree of activation of each node, which permits fast as well as slow learning with compressed or distributed codes. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Dynamic weights that project to coding nodes obey a distributed instar leaning law and those that originate from coding nodes obey a distributed outstar learning law. Inputs activate distributed codes through phasic and tonic signal components with dual computational properties, and a parallel distributed match-reset-search process helps stabilize memory.National Science Foundation (IRI 94-0 1659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    ARTMAP Neural Networks for Information Fusion and Data Mining: Map Production and Target Recognition Methodologies

    Full text link
    The Sensor Exploitation Group of MIT Lincoln Laboratory incorporated an early version of the ARTMAP neural network as the recognition engine of a hierarchical system for fusion and data mining of registered geospatial images. The Lincoln Lab system has been successfully fielded, but is limited to target I non-target identifications and does not produce whole maps. Procedures defined here extend these capabilities by means of a mapping method that learns to identify and distribute arbitrarily many target classes. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of canonical algorithms and a benchmark testbed has enabled the evaluation of candidate recognition networks as well as pre- and post-processing and feature selection options. The resulting mapping methodology sets a standard for a variety of spatial data mining tasks. In particular, training pixels are drawn from a region that is spatially distinct from the mapped region, which could feature an output class mix that is substantially different from that of the training set. The system recognition component, default ARTMAP, with its fully specified set of canonical parameter values, has become the a priori system of choice among this family of neural networks for a wide variety of applications.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Office of Naval Research (N00014-01-1-0624

    ARTMAP Neural Networks for Information Fusion and Data Mining: Map Production and Target Recognition Methodologies

    Full text link
    The Sensor Exploitation Group of MIT Lincoln Laboratory incorporated an early version of the ARTMAP neural network as the recognition engine of a hierarchical system for fusion and data mining of registered geospatial images. The Lincoln Lab system has been successfully fielded, but is limited to target I non-target identifications and does not produce whole maps. Procedures defined here extend these capabilities by means of a mapping method that learns to identify and distribute arbitrarily many target classes. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of canonical algorithms and a benchmark testbed has enabled the evaluation of candidate recognition networks as well as pre- and post-processing and feature selection options. The resulting mapping methodology sets a standard for a variety of spatial data mining tasks. In particular, training pixels are drawn from a region that is spatially distinct from the mapped region, which could feature an output class mix that is substantially different from that of the training set. The system recognition component, default ARTMAP, with its fully specified set of canonical parameter values, has become the a priori system of choice among this family of neural networks for a wide variety of applications.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); Office of Naval Research (N00014-01-1-0624

    Distributed Activation, Search, and Learning by ART and ARTMAP Neural Networks

    Full text link
    Adaptive resonance theory (ART) models have been used for learning and prediction in a wide variety of applications. Winner-take-all coding allows these networks to maintain stable memories, but this type of code representation can cause problems such as category proliferation with fast learning and a noisy training set. A new class of ART models with an arbitrarily distributed code representation is outlined here. With winner-take-all coding, the unsupervised distributed ART model (dART) reduces to fuzzy ART and the supervised distributed ARTMAP model (dARTMAP) reduces to fuzzy ARTMAP. dART automatically apportions learned changes according to the degree of activation of each node, which permits fast as well as slow learning with compressed or distributed codes. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Dynamic weights that project to coding nodes obey a distributed instar leaning law and those that originate from coding nodes obey a distributed outstar learning law. Inputs activate distributed codes through phasic and tonic signal components with dual computational properties, and a parallel distributed match-reset-search process helps stabilize memory.National Science Foundation (IRI 94-0 1659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    dARTMAP: A Neural Network for Fast Distributed Supervised Learning

    Full text link
    Distributed coding at the hidden layer of a multi-layer perceptron (MLP) endows the network with memory compression and noise tolerance capabilities. However, an MLP typically requires slow off-line learning to avoid catastrophic forgetting in an open input environment. An adaptive resonance theory (ART) model is designed to guarantee stable memories even with fast on-line learning. However, ART stability typically requires winner-take-all coding, which may cause category proliferation in a noisy input environment. Distributed ARTMAP (dARTMAP) seeks to combine the computational advantages of MLP and ART systems in a real-time neural network for supervised learning, An implementation algorithm here describes one class of dARTMAP networks. This system incorporates elements of the unsupervised dART model as well as new features, including a content-addressable memory (CAM) rule for improved contrast control at the coding field. A dARTMAP system reduces to fuzzy ARTMAP when coding is winner-take-all. Simulations show that dARTMAP retains fuzzy ARTMAP accuracy while significantly improving memory compression.National Science Foundation (IRI-94-01659); Office of Naval Research (N00014-95-1-0409, N00014-95-0657

    Automated construction of a hierarchy of self-organized neural network classifiers

    Full text link
    This paper documents an effort to design and implement a neural network-based, automatic classification system which dynamically constructs and trains a decision tree. The system is a combination of neural network and decision tree technology. The decision tree is constructed to partition a large classification problem into smaller problems. The neural network modules then solve these smaller problems. We used a variant of the Fuzzy ARTMAP neural network which can be trained much more quickly than traditional neural networks. The research extends the concept of self-organization from within the neural network to the overall structure of the dynamically constructed decision hierarchy. The primary advantage is avoidance of manual tedium and subjective bias in constructing decision hierarchies. Additionally, removing the need for manual construction of the hierarchy opens up a large class of potential classification applications. When tested on data from real-world images, the automatically generated hierarchies performed slightly better than an intuitive (handbuilt) hierarchy. Because the neural networks at the nodes of the decision hierarchy are solving smaller problems, generalization performance can really be improved if the number of features used to solve these problems is reduced. Algorithms for automatically selecting which features to use for each individual classification module were also implemented. We were able to achieve the same level of performance as in previous manual efforts, but in an efficient, automatic manner. The technology developed has great potential in a number of commercial areas, including data mining, pattern recognition, and intelligent interfaces for personal computer applications. Sample applications include: fraud detection, bankruptcy prediction, data mining agent, scalable object recognition system, email agent, resource librarian agent, and a decision aid agent

    Unifying Multiple Knowledge Domains Using the ARTMAP Information Fusion System

    Full text link
    Sensors working at different times, locations, and scales, and experts with different goals, languages, and situations, may produce apparently inconsistent image labels that are reconciled by their implicit underlying relationships. Even when such relationships are unknown to the user, an ARTMAP information fusion system discovers a hierarchical knowledge structure for a labeled dataset. The present paper addresses the problem of integrating two or more independent knowledge hierarchies based on the same low-level classes. The new system fuses independent domains into a unified knowledge structure, discovering cross-domain rules in this process. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. In order to self-organize its expert system, ARTMAP information fusion system features distributed code representations that exploit the neural network’s capacity for one-to-many learning. The fusion system software and testbed datasets are available from http://cns.bu.edu/techlabNational Science Foundation (SBE-0354378); National Geospatial-Intelligence Agency (NMA 201-01-1-2016
    • …
    corecore