538 research outputs found

    Integrated radio frequency synthetizers for wireless applications

    Get PDF
    This thesis consists of six publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis concentrates on the design of phase-locked loop radio frequency synthesizers for wireless applications. In particular, the focus is on the implementation of the prescaler, the phase detector, and the chargepump. This work reviews the requirements set for the frequency synthesizer by the wireless standards, and how these requirements are derived from the system specifications. These requirements apply to both integer-N and fractional-N synthesizers. The work also introduces the special considerations related to the design of fractional-N phase-locked loops. Finally, implementation alternatives for the different building blocks of the synthesizer are reviewed. The presented work introduces new topologies for the phase detector and the chargepump, and improved topologies for high speed CMOS prescalers. The experimental results show that the presented topologies can be successfully used in both integer-N and fractional-N synthesizers with state-of-the-art performance. The last part of this work discusses the additional considerations that surface when the synthesizer is integrated into a larger system chip. It is shown experimentally that the synthesizer can be successfully integrated into a complex transceiver IC without sacrificing the performance of the synthesizer or the transceiver.reviewe

    Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

    Get PDF
    Ultraยฌwide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixerยฌbased frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phaseยฌlocked loop (PLL)ยฌbased synthesizers. Harmonic cancelaยฌtion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5ยฌGHz CSDยฌQVCO in 0.18 ยตm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ยฌ120 dBc at 3 MHz o๏ฌ€set. Compared with existing phase shift LC QVCOs, the proposed CSDยฌQVCO presents better phase noise and power e๏ฌƒciency. Finally, a novel injection locking frequency divider (ILFD) is presented. Imยฌplemented with three stages in 0.18 ยตm CMOS technology, the ILFD draws 3ยฌmA current from a 1.8ยฌV power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitterโ€™s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided

    New strategies for low noise, agile PLL frequency synthesis

    Get PDF
    Phase-Locked Loop based frequency synthesis is an essential technique employed in wireless communication systems for local oscillator generation. The ultimate goal in any design of frequency synthesisers is to generate precise and stable output frequencies with fast switching and minimal spurious and phase noise. The conflict between high resolution and fast switching leads to two separate integer synthesisers to satisfy critical system requirements. This thesis concerns a new sigma-delta fractional-N synthesiser design which is able to be directly modulated at high data rates while simultaneously achieving good noise performance. Measured results from a prototype indicate that fast switching, low noise and spurious free spectra are achieved for most covered frequencies. The phase noise of the unmodulated synthesiser was measured โˆ’113 dBc/Hz at 100 kHz offset from the carrier. The intermodulation effect in synthesisers is capable of producing a family of spurious components of identical form to fractional spurs caused in quantisation process. This effect directly introduces high spurs on some channels of the synthesiser output. Numerical and analytic results describing this effect are presented and amplitude and distribution of the resulting fractional spurs are predicted and validated against simulated and measured results. Finally an experimental arrangement, based on a phase compensation technique, is presented demonstrating significant suppression of intermodulation-borne spurs. A new technique, pre-distortion noise shaping, is proposed to dramatically reduce the impact of fractional spurs in fractional-N synthesisers. The key innovation is the introduction in the bitstream generation process of carefully-chosen set of components at identical offset frequencies and amplitudes and in anti-phase with the principal fractional spurs. These signals are used to modify the ฮฃ-ฮ” noise shaping, so that fractional spurs are effectively cancelled. This approach can be highly effective in improving spectral purity and reduction of spurious components caused by the ฮฃ-ฮ” modulator, quantisation noise, intermodulation effects and any other circuit factors. The spur cancellation is achieved in the digital part of the synthesiser without introducing additional circuitry. This technique has been convincingly demonstrated by simulated and experimental results

    DDR5 ํด๋ฝ ๋ฒ„ํผ๋ฅผ ์œ„ํ•œ LC PLL์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .This thesis describes a wide-range, fast-locking LC PLL for DDR5 clock buffer application. To operate LC PLL at wide range of input frequency, proposed PLL uses LC VCO with 28GHz center frequency and calculates appropriate division ratio of programmable divider for certain input frequen-cy at transient state. Calculating division ratio is achieved by using integer counter and fractional counter, detecting frequency of input clock at transient state. After calculating division ratio, proposed PLL operates as 3rd order charge pump PLL with optimum current value to lock fast. Proposed PLL is described with Systemverilog and simulation results shows that proposed LC PLL operates at 1 ~ 4.2GHz input frequency, while successfully acquires to lock at under 1ฮผs. Also, LC-VCO is designed in a 40nm CMOS and simulation results shows that tuning range of VCO is ยฑ9.25% with respect to center frequency of 28.2GHz, and VCO dissipates 26.4mW and phase noise is โ€“104.86dBc/Hz at 1MHz offset, operating at center fre-quency with 1.1V supply voltage.๋ณธ ๋…ผ๋ฌธ์€ DDR5 Clock Buffer๋ฅผ ์œ„ํ•œ, ๋„“์€ ๋ฒ”์œ„์—์„œ ๋น ๋ฅด๊ฒŒ ๋ฝ์„ ํ•˜๋Š” LC PLL์— ๋Œ€ํ•ด์„œ ์„ค๋ช…ํ•œ๋‹ค. ๋„“์€ ๋ฒ”์œ„์˜ ์ž…๋ ฅ ์ฃผํŒŒ์ˆ˜์—์„œ LC PLL์„ ๋™์ž‘ํ•˜๊ธฐ ์œ„ํ•ด, ์ œ์•ˆํ•œ PLL์€ 28GHz๊ฐ€ ์ค‘์‹ฌ ์ฃผํŒŒ์ˆ˜์ธ LC VCO์„ ์‚ฌ์šฉํ•˜์—ฌ, ๊ณผ๋„ ์ƒํƒœ์—์„œ ํŠน์ • ์ž…๋ ฅ ์ฃผํŒŒ์ˆ˜์— ์•Œ๋งž๋Š” ํ”„๋กœ๊ทธ๋žจ ๊ฐ€๋Šฅํ•œdivider์˜ ์ œ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•œ๋‹ค. ์ œ์ˆ˜์˜ ๊ณ„์‚ฐ์€ ๊ณผ๋„ ์ƒํƒœ์—์„œ ์ž…๋ ฅ ํด๋ฝ์˜ ์ฃผํŒŒ์ˆ˜๋ฅผ ๊ฐ์ง€ํ•˜๋Š” ์ •์ˆ˜ ์นด์šดํ„ฐ์™€ ์†Œ์ˆ˜ ์นด์šดํ„ฐ๋ฅผ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง„๋‹ค. ์ œ์ˆ˜์˜ ๊ณ„์‚ฐ ์ดํ›„, ์ œ์•ˆํ•œ PLL์€ ๋น ๋ฅด๊ฒŒ ๋ฝ์„ ํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์ ์˜ ์ „๋ฅ˜ ๊ฐ’์œผ๋กœ 3์ฐจ์˜ Charge pump PLL๋กœ ๋™์ž‘ํ•œ๋‹ค. ์ œ์•ˆํ•œ PLL์€ systemverilog๋กœ ๊ธฐ์ˆ ๋˜์—ˆ๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ์ œ์•ˆํ•œ LC PLL์€ 1 ~ 4.2GHz์˜ ์ž…๋ ฅ์ฃผํŒŒ์ˆ˜์—์„œ ๋™์ž‘ํ•˜๋ฉฐ, 1us ์ด๋‚ด์—์„œ ์„ฑ๊ณต์ ์œผ๋กœ ๋ฝ์„ ํ•œ๋‹ค. ๋˜ํ•œ, LC-VCO๊ฐ€ 40nm CMOS ๊ณต์ •์—์„œ ์„ค๊ณ„๋˜์—ˆ๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ VCO์˜ ํŠœ๋‹ ๋ฒ”์œ„๊ฐ€ ์ค‘์‹ฌ ์ฃผํŒŒ์ˆ˜ 28.2GHz์„ ๊ธฐ์ค€์œผ๋กœ ยฑ9.25%์ด๊ณ , ์ค‘์‹ฌ ์ฃผํŒŒ์ˆ˜์™€ 1.1V ๊ณต๊ธ‰ ์ „์••์—์„œ 26.4mW์˜ ์ „๋ ฅ์„ ์†Œ๋ชจํ•˜๊ณ , phase noise๊ฐ€ 1MHz ์˜คํ”„์…‹์—์„œ -104.86dBc/Hz์ž„์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 3 CHAPTER 2 BACKGROUND ON LC PLL 4 2.1 BASIS OF PLL 4 2.2 FREQUENCY RANGE AND LOCK TIME OF PLL 11 2.2.1 FREQUENCY RANGE 11 2.2.2 LOCK TIME 13 2.3 BASIS OF LC VCO 15 CHAPTER 3 DESIGN OF LC PLL FOR DDR5 CLOCK BUFFER 18 3.1 DESIGN CONSIDERATION 18 3.2 OVERALL ARCHITECTURE 20 3.3 OPERATION PRINCIPLE 24 3.4 IMPLEMENTATION OF LC VCO 33 3.5 ALTERNATIVE DESIGN CHOICE OF LC PLL FOR DDR5 CLOCK BUFFER 35 CHAPTER 4 SIMULATION RESULT 37 4.1 PLL 37 4.2 LC VCO 42 CHAPTER 5 CONCLUSION 46 BIBLIOGRAPHY 47 ์ดˆ ๋ก 49์„

    ๊ณ ์† ์‹œ๋ฆฌ์–ผ ๋งํฌ๋ฅผ ์œ„ํ•œ ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ •๋•๊ท .In this dissertation, major concerns in the clocking of modern serial links are discussed. As sub-rate, multi-standard architectures are becoming predominant, the conventional clocking methodology seems to necessitate innovation in terms of low-cost implementation. Frequency synthesis with active, inductor-less oscillators replacing LC counterparts are reviewed, and solutions for two major drawbacks are proposed. Each solution is verified by prototype chip design, giving a possibility that the inductor-less oscillator may become a proper candidate for future high-speed serial links. To mitigate the high flicker noise of a high-frequency ring oscillator (RO), a reference multiplication technique that effectively extends the bandwidth of the following all-digital phase-locked loop (ADPLL) is proposed. The technique avoids any jitter accumulation, generating a clean mid-frequency clock, overall achieving high jitter performance in conjunction with the ADPLL. Timing constraint for the proper reference multiplication is first analyzed to determine the calibration points that may correct the existent phase errors. The weight for each calibration point is updated by the proposed a priori probability-based least-mean-square (LMS) algorithm. To minimize the time required for the calibration, each gain for the weight update is adaptively varied by deducing a posteriori which error source dominates the others. The prototype chip is fabricated in a 40-nm CMOS technology, and its measurement results verify the low-jitter, high-frequency clock generation with fast calibration settling. The presented work achieves an rms jitter of 177/223 fs at 8/16-GHz output, consuming 12.1/17-mW power. As the second embodiment, an RO-based ADPLL with an analog technique that addresses the high supply sensitivity of the RO is presented. Unlike prior arts, the circuit for the proposed technique does not extort the RO voltage headroom, allowing high-frequency oscillation. Further, the performance given from the technique is robust over process, voltage, and temperature (PVT) variations, avoiding the use of additional calibration hardware. Lastly, a comprehensive analysis of phase noise contribution is conducted for the overall ADPLL, followed by circuit optimizations, to retain the low-jitter output. Implemented in a 40-nm CMOS technology, the frequency synthesizer achieves an rms jitter of 289 fs at 8 GHz output without any injected supply noise. Under a 20-mVrms white supply noise, the ADPLL suppresses supply-noise-induced jitter by -23.8 dB.๋ณธ ๋…ผ๋ฌธ์€ ํ˜„๋Œ€ ์‹œ๋ฆฌ์–ผ ๋งํฌ์˜ ํด๋ฝํ‚น์— ๊ด€์—ฌ๋˜๋Š” ์ฃผ์š”ํ•œ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•˜์—ฌ ๊ธฐ์ˆ ํ•œ๋‹ค. ์ค€์†๋„, ๋‹ค์ค‘ ํ‘œ์ค€ ๊ตฌ์กฐ๋“ค์ด ์ฑ„ํƒ๋˜๊ณ  ์žˆ๋Š” ์ถ”์„ธ์— ๋”ฐ๋ผ, ๊ธฐ์กด์˜ ํด๋ผํ‚น ๋ฐฉ๋ฒ•์€ ๋‚ฎ์€ ๋น„์šฉ์˜ ๊ตฌํ˜„์˜ ๊ด€์ ์—์„œ ์ƒˆ๋กœ์šด ํ˜์‹ ์„ ํ•„์š”๋กœ ํ•œ๋‹ค. LC ๊ณต์ง„๊ธฐ๋ฅผ ๋Œ€์‹ ํ•˜์—ฌ ๋Šฅ๋™ ์†Œ์ž ๋ฐœ์ง„๊ธฐ๋ฅผ ์‚ฌ์šฉํ•œ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ์— ๋Œ€ํ•˜์—ฌ ์•Œ์•„๋ณด๊ณ , ์ด์— ๋ฐœ์ƒํ•˜๋Š” ๋‘๊ฐ€์ง€ ์ฃผ์š” ๋ฌธ์ œ์ ๊ณผ ๊ฐ๊ฐ์— ๋Œ€ํ•œ ํ•ด๊ฒฐ ๋ฐฉ์•ˆ์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๊ฐ ์ œ์•ˆ ๋ฐฉ๋ฒ•์„ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์„ ํ†ตํ•ด ๊ทธ ํšจ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ , ์ด์–ด์„œ ๋Šฅ๋™ ์†Œ์ž ๋ฐœ์ง„๊ธฐ๊ฐ€ ๋ฏธ๋ž˜์˜ ๊ณ ์† ์‹œ๋ฆฌ์–ผ ๋งํฌ์˜ ํด๋ฝํ‚น์— ์‚ฌ์šฉ๋  ๊ฐ€๋Šฅ์„ฑ์— ๋Œ€ํ•ด ๊ฒ€ํ† ํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์จ, ๊ณ ์ฃผํŒŒ ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ๋†’์€ ํ”Œ๋ฆฌ์ปค ์žก์Œ์„ ์™„ํ™”์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๊ธฐ์ค€ ์‹ ํ˜ธ๋ฅผ ๋ฐฐ์ˆ˜ํ™”ํ•˜์—ฌ ๋’ท๋‹จ์˜ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„์˜ ๋Œ€์—ญํญ์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ทน๋Œ€ํ™” ์‹œํ‚ค๋Š” ํšŒ๋กœ ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ๊ธฐ์ˆ ์€ ์ง€ํ„ฐ๋ฅผ ๋ˆ„์  ์‹œํ‚ค์ง€ ์•Š์œผ๋ฉฐ ๋”ฐ๋ผ์„œ ๊นจ๋—ํ•œ ์ค‘๊ฐ„ ์ฃผํŒŒ์ˆ˜ ํด๋ฝ์„ ์ƒ์„ฑ์‹œ์ผœ ์œ„์ƒ ๊ณ ์ • ๋ฃจํ”„์™€ ํ•จ๊ป˜ ๋†’์€ ์„ฑ๋Šฅ์˜ ๊ณ ์ฃผํŒŒ ํด๋ฝ์„ ํ•ฉ์„ฑํ•œ๋‹ค. ๊ธฐ์ค€ ์‹ ํ˜ธ๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ๋ฐฐ์ˆ˜ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ํƒ€์ด๋ฐ ์กฐ๊ฑด๋“ค์„ ๋จผ์ € ๋ถ„์„ํ•˜์—ฌ ํƒ€์ด๋ฐ ์˜ค๋ฅ˜๋ฅผ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•๋ก ์„ ํŒŒ์•…ํ•œ๋‹ค. ๊ฐ ๊ต์ • ์ค‘๋Ÿ‰์€ ์—ฐ์—ญ์  ํ™•๋ฅ ์„ ๊ธฐ๋ฐ˜์œผ๋กœํ•œ LMS ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ๊ฐฑ์‹ ๋˜๋„๋ก ์„ค๊ณ„๋œ๋‹ค. ๊ต์ •์— ํ•„์š”ํ•œ ์‹œ๊ฐ„์„ ์ตœ์†Œํ™” ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐ ๊ต์ • ์ด๋“์€ ํƒ€์ด๋ฐ ์˜ค๋ฅ˜ ๊ทผ์›๋“ค์˜ ํฌ๊ธฐ๋ฅผ ๊ท€๋‚ฉ์ ์œผ๋กœ ์ถ”๋ก ํ•œ ๊ฐ’์„ ๋ฐ”ํƒ•์œผ๋กœ ์ง€์†์ ์œผ๋กœ ์ œ์–ด๋œ๋‹ค. 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋œ ํ”„๋กœํ† ํƒ€์ž… ์นฉ์˜ ์ธก์ •์„ ํ†ตํ•ด ์ €์†Œ์Œ, ๊ณ ์ฃผํŒŒ ํด๋ฝ์„ ๋น ๋ฅธ ๊ต์ • ์‹œ๊ฐ„์•ˆ์— ํ•ฉ์„ฑํ•ด ๋ƒ„์„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋Š” 177/223 fs์˜ rms ์ง€ํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” 8/16 GHz์˜ ํด๋ฝ์„ ์ถœ๋ ฅํ•œ๋‹ค. ๋‘๋ฒˆ์งธ ์‹œ์—ฐ์œผ๋กœ์จ, ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ๋†’์€ ์ „์› ๋…ธ์ด์ฆˆ ์˜์กด์„ฑ์„ ์™„ํ™”์‹œํ‚ค๋Š” ๊ธฐ์ˆ ์ด ํฌํ•จ๋œ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ๊ฐ€ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด๋Š” ๊ณ ๋ฆฌ ๋ฐœ์ง„๊ธฐ์˜ ์ „์•• ํ—ค๋“œ๋ฃธ์„ ๋ณด์กดํ•จ์œผ๋กœ์„œ ๊ณ ์ฃผํŒŒ ๋ฐœ์ง„์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•œ๋‹ค. ๋‚˜์•„๊ฐ€, ์ „์› ๋…ธ์ด์ฆˆ ๊ฐ์†Œ ์„ฑ๋Šฅ์€ ๊ณต์ •, ์ „์••, ์˜จ๋„ ๋ณ€๋™์— ๋Œ€ํ•˜์—ฌ ๋ฏผ๊ฐํ•˜์ง€ ์•Š์œผ๋ฉฐ, ๋”ฐ๋ผ์„œ ์ถ”๊ฐ€์ ์ธ ๊ต์ • ํšŒ๋กœ๋ฅผ ํ•„์š”๋กœ ํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์œ„์ƒ ๋…ธ์ด์ฆˆ์— ๋Œ€ํ•œ ํฌ๊ด„์  ๋ถ„์„๊ณผ ํšŒ๋กœ ์ตœ์ ํ™”๋ฅผ ํ†ตํ•˜์—ฌ ์ฃผํŒŒ์ˆ˜ ํ•ฉ์„ฑ๊ธฐ์˜ ์ €์žก์Œ ์ถœ๋ ฅ์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š๋Š” ๋ฐฉ๋ฒ•์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ํ•ด๋‹น ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 40-nm CMOS ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์ „์› ๋…ธ์ด์ฆˆ๊ฐ€ ์ธ๊ฐ€๋˜์ง€ ์•Š์€ ์ƒํƒœ์—์„œ 289 fs์˜ rms ์ง€ํ„ฐ๋ฅผ ๊ฐ€์ง€๋Š” 8 GHz์˜ ํด๋ฝ์„ ์ถœ๋ ฅํ•œ๋‹ค. ๋˜ํ•œ, 20 mVrms์˜ ์ „์› ๋…ธ์ด์ฆˆ๊ฐ€ ์ธ๊ฐ€๋˜์—ˆ์„ ๋•Œ์— ์œ ๋„๋˜๋Š” ์ง€ํ„ฐ์˜ ์–‘์„ -23.8 dB ๋งŒํผ ์ค„์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivation 3 1.1.1 Clocking in High-Speed Serial Links 4 1.1.2 Multi-Phase, High-Frequency Clock Conversion 8 1.2 Dissertation Objectives 10 2 RO-Based High-Frequency Synthesis 12 2.1 Phase-Locked Loop Fundamentals 12 2.2 Toward All-Digital Regime 15 2.3 RO Design Challenges 21 2.3.1 Oscillator Phase Noise 21 2.3.2 Challenge 1: High Flicker Noise 23 2.3.3 Challenge 2: High Supply Noise Sensitivity 26 3 Filtering RO Noise 28 3.1 Introduction 28 3.2 Proposed Reference Octupler 34 3.2.1 Delay Constraint 34 3.2.2 Phase Error Calibration 38 3.2.3 Circuit Implementation 51 3.3 IL-ADPLL Implementation 55 3.4 Measurement Results 59 3.5 Summary 63 4 RO Supply Noise Compensation 69 4.1 Introduction 69 4.2 Proposed Analog Closed Loop for Supply Noise Compensation 72 4.2.1 Circuit Implementation 73 4.2.2 Frequency-Domain Analysis 76 4.2.3 Circuit Optimization 81 4.3 ADPLL Implementation 87 4.4 Measurement Results 90 4.5 Summary 98 5 Conclusions 99 A Notes on the 8REF 102 B Notes on the ACSC 105๋ฐ•

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    A high-frequency quad-modulus prescaler for fractional-N frequency synthesizer

    Get PDF
    Master'sMASTER OF ENGINEERIN
    • โ€ฆ
    corecore