27,842 research outputs found

    Blind Detection of Polar Codes

    Full text link
    Polar codes were recently chosen to protect the control channel information in the next-generation mobile communication standard (5G) defined by the 3GPP. As a result, receivers will have to implement blind detection of polar coded frames in order to keep complexity, latency, and power consumption tractable. As a newly proposed class of block codes, the problem of polar-code blind detection has received very little attention. In this work, we propose a low-complexity blind-detection algorithm for polar-encoded frames. We base this algorithm on a novel detection metric with update rules that leverage the a priori knowledge of the frozen-bit locations, exploiting the inherent structures that these locations impose on a polar-encoded block of data. We show that the proposed detection metric allows to clearly distinguish polar-encoded frames from other types of data by considering the cumulative distribution functions of the detection metric, and the receiver operating characteristic. The presented results are tailored to the 5G standardization effort discussions, i.e., we consider a short low-rate polar code concatenated with a CRC.Comment: 6 pages, 8 figures, to appear at the IEEE Int. Workshop on Signal Process. Syst. (SiPS) 201

    Diversity in mobile communications for blind detection of block-coded modulations

    Get PDF
    Spatial, temporal, and frequency diversity structures are analyzed to address the blind equalization problem in the presence of time-variant frequency selective channels. The aim of the paper is to present equalization schemes useful in front of fast changing channel responses. The best solution is a deterministic blind criterion that allows direct channel equalization and symbol detection. The main contribution of this paper is to present deterministic blind equalization schemes in CDMA systems (frequency diversity) to reduce the impact of the time-variant frequency selective channel.Peer ReviewedPostprint (published version

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen
    • …
    corecore