3,023 research outputs found

    A numerical algorithm for L2L_2 semi-discrete optimal transport in 3D

    Get PDF
    This paper introduces a numerical algorithm to compute the L2L_2 optimal transport map between two measures μ\mu and ν\nu, where μ\mu derives from a density ρ\rho defined as a piecewise linear function (supported by a tetrahedral mesh), and where ν\nu is a sum of Dirac masses. I first give an elementary presentation of some known results on optimal transport and then observe a relation with another problem (optimal sampling). This relation gives simple arguments to study the objective functions that characterize both problems. I then propose a practical algorithm to compute the optimal transport map between a piecewise linear density and a sum of Dirac masses in 3D. In this semi-discrete setting, Aurenhammer et.al [\emph{8th Symposium on Computational Geometry conf. proc.}, ACM (1992)] showed that the optimal transport map is determined by the weights of a power diagram. The optimal weights are computed by minimizing a convex objective function with a quasi-Newton method. To evaluate the value and gradient of this objective function, I propose an efficient and robust algorithm, that computes at each iteration the intersection between a power diagram and the tetrahedral mesh that defines the measure μ\mu. The numerical algorithm is experimented and evaluated on several datasets, with up to hundred thousands tetrahedra and one million Dirac masses.Comment: 23 pages, 14 figure

    \v{C}ech-Delaunay gradient flow and homology inference for self-maps

    Full text link
    We call a continuous self-map that reveals itself through a discrete set of point-value pairs a sampled dynamical system. Capturing the available information with chain maps on Delaunay complexes, we use persistent homology to quantify the evidence of recurrent behavior. We establish a sampling theorem to recover the eigenspace of the endomorphism on homology induced by the self-map. Using a combinatorial gradient flow arising from the discrete Morse theory for \v{C}ech and Delaunay complexes, we construct a chain map to transform the problem from the natural but expensive \v{C}ech complexes to the computationally efficient Delaunay triangulations. The fast chain map algorithm has applications beyond dynamical systems.Comment: 22 pages, 8 figure

    Three-dimensional alpha shapes

    Full text link
    Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ``shape'' of the set. For that purpose, this paper introduces the formal notion of the family of α\alpha-shapes of a finite point set in \Real^3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter \alpha \in \Real controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size nn in time O(n2)O(n^2), worst case. A robust implementation of the algorithm is discussed and several applications in the area of scientific computing are mentioned.Comment: 32 page

    Optimizing the geometrical accuracy of curvilinear meshes

    Full text link
    This paper presents a method to generate valid high order meshes with optimized geometrical accuracy. The high order meshing procedure starts with a linear mesh, that is subsequently curved without taking care of the validity of the high order elements. An optimization procedure is then used to both untangle invalid elements and optimize the geometrical accuracy of the mesh. Standard measures of the distance between curves are considered to evaluate the geometrical accuracy in planar two-dimensional meshes, but they prove computationally too costly for optimization purposes. A fast estimate of the geometrical accuracy, based on Taylor expansions of the curves, is introduced. An unconstrained optimization procedure based on this estimate is shown to yield significant improvements in the geometrical accuracy of high order meshes, as measured by the standard Haudorff distance between the geometrical model and the mesh. Several examples illustrate the beneficial impact of this method on CFD solutions, with a particular role of the enhanced mesh boundary smoothness.Comment: Submitted to JC

    Down the Rabbit Hole: Robust Proximity Search and Density Estimation in Sublinear Space

    Full text link
    For a set of nn points in d\Re^d, and parameters kk and \eps, we present a data structure that answers (1+\eps,k)-\ANN queries in logarithmic time. Surprisingly, the space used by the data-structure is \Otilde (n /k); that is, the space used is sublinear in the input size if kk is sufficiently large. Our approach provides a novel way to summarize geometric data, such that meaningful proximity queries on the data can be carried out using this sketch. Using this, we provide a sublinear space data-structure that can estimate the density of a point set under various measures, including: \begin{inparaenum}[(i)] \item sum of distances of kk closest points to the query point, and \item sum of squared distances of kk closest points to the query point. \end{inparaenum} Our approach generalizes to other distance based estimation of densities of similar flavor. We also study the problem of approximating some of these quantities when using sampling. In particular, we show that a sample of size \Otilde (n /k) is sufficient, in some restricted cases, to estimate the above quantities. Remarkably, the sample size has only linear dependency on the dimension
    corecore