9,093 research outputs found

    Partial Replica Location And Selection For Spatial Datasets

    Get PDF
    As the size of scientific datasets continues to grow, we will not be able to store enormous datasets on a single grid node, but must distribute them across many grid nodes. The implementation of partial or incomplete replicas, which represent only a subset of a larger dataset, has been an active topic of research. Partial Spatial Replicas extend this functionality to spatial data, allowing us to distribute a spatial dataset in pieces over several locations. We investigate solutions to the partial spatial replica selection problems. First, we describe and develop two designs for an Spatial Replica Location Service (SRLS), which must return the set of replicas that intersect with a query region. Integrating a relational database, a spatial data structure and grid computing software, we build a scalable solution that works well even for several million replicas. In our SRLS, we have improved performance by designing a R-tree structure in the backend database, and by aggregating several queries into one larger query, which reduces overhead. We also use the Morton Space-filling Curve during R-tree construction, which improves spatial locality. In addition, we describe R-tree Prefetching(RTP), which effectively utilizes the modern multi-processor architecture. Second, we present and implement a fast replica selection algorithm in which a set of partial replicas is chosen from a set of candidates so that retrieval performance is maximized. Using an R-tree based heuristic algorithm, we achieve O(n log n) complexity for this NP-complete problem. We describe a model for disk access performance that takes filesystem prefetching into account and is sufficiently accurate for spatial replica selection. Making a few simplifying assumptions, we present a fast replica selection algorithm for partial spatial replicas. The algorithm uses a greedy approach that attempts to maximize performance by choosing a collection of replica subsets that allow fast data retrieval by a client machine. Experiments show that the performance of the solution found by our algorithm is on average always at least 91% and 93.4% of the performance of the optimal solution in 4-node and 8-node tests respectively

    The Impact of Data Replicatino on Job Scheduling Performance in Hierarchical data Grid

    Full text link
    In data-intensive applications data transfer is a primary cause of job execution delay. Data access time depends on bandwidth. The major bottleneck to supporting fast data access in Grids is the high latencies of Wide Area Networks and Internet. Effective scheduling can reduce the amount of data transferred across the internet by dispatching a job to where the needed data are present. Another solution is to use a data replication mechanism. Objective of dynamic replica strategies is reducing file access time which leads to reducing job runtime. In this paper we develop a job scheduling policy and a dynamic data replication strategy, called HRS (Hierarchical Replication Strategy), to improve the data access efficiencies. We study our approach and evaluate it through simulation. The results show that our algorithm has improved 12% over the current strategies.Comment: 11 pages, 7 figure

    A Framework for Developing Real-Time OLAP algorithm using Multi-core processing and GPU: Heterogeneous Computing

    Full text link
    The overwhelmingly increasing amount of stored data has spurred researchers seeking different methods in order to optimally take advantage of it which mostly have faced a response time problem as a result of this enormous size of data. Most of solutions have suggested materialization as a favourite solution. However, such a solution cannot attain Real- Time answers anyhow. In this paper we propose a framework illustrating the barriers and suggested solutions in the way of achieving Real-Time OLAP answers that are significantly used in decision support systems and data warehouses

    Analysis and selection of the simulation environment

    Get PDF
    This document provides the initial report of the Simulation work package (Work Package 4,WP4) of the CATNETS project. It contains an analisys of the requirements for a simulation tool to be used in CATNETS and an evaluation of a number of grid and general purpose simulators with respect to the selected requirements. A reasoned choice of a suitable simulator is performed based on the evaluation conducted. -- Diese Arbeit analysiert die Anforderungen an eine Simulationsumgebung für die Analyse der Katallaxie. Anhand von Kennzahlen wird die Auswahl der Simulationsumgebung bestimmt.Grid Computing

    An Unbiased Hessian Representation for Monte Carlo PDFs

    Get PDF
    We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (CMC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the CMC-H PDF set.Comment: 27 pages, 17 figures; v2: replaced plots in Fig.1 which had a conflict with google chrome inline viewer; v3: final version, to be published in EPJC; figs 5,10,11,13 updated with new (more accurate) choice of parameter
    corecore