10,822 research outputs found

    Saliency-guided Adaptive Seeding for Supervoxel Segmentation

    Full text link
    We propose a new saliency-guided method for generating supervoxels in 3D space. Rather than using an evenly distributed spatial seeding procedure, our method uses visual saliency to guide the process of supervoxel generation. This results in densely distributed, small, and precise supervoxels in salient regions which often contain objects, and larger supervoxels in less salient regions that often correspond to background. Our approach largely improves the quality of the resulting supervoxel segmentation in terms of boundary recall and under-segmentation error on publicly available benchmarks.Comment: 6 pages, accepted to IROS201

    Live User-guided Intrinsic Video For Static Scenes

    Get PDF
    We present a novel real-time approach for user-guided intrinsic decomposition of static scenes captured by an RGB-D sensor. In the first step, we acquire a three-dimensional representation of the scene using a dense volumetric reconstruction framework. The obtained reconstruction serves as a proxy to densely fuse reflectance estimates and to store user-provided constraints in three-dimensional space. User constraints, in the form of constant shading and reflectance strokes, can be placed directly on the real-world geometry using an intuitive touch-based interaction metaphor, or using interactive mouse strokes. Fusing the decomposition results and constraints in three-dimensional space allows for robust propagation of this information to novel views by re-projection.We leverage this information to improve on the decomposition quality of existing intrinsic video decomposition techniques by further constraining the ill-posed decomposition problem. In addition to improved decomposition quality, we show a variety of live augmented reality applications such as recoloring of objects, relighting of scenes and editing of material appearance

    Geometric Multi-Model Fitting with a Convex Relaxation Algorithm

    Full text link
    We propose a novel method to fit and segment multi-structural data via convex relaxation. Unlike greedy methods --which maximise the number of inliers-- this approach efficiently searches for a soft assignment of points to models by minimising the energy of the overall classification. Our approach is similar to state-of-the-art energy minimisation techniques which use a global energy. However, we deal with the scaling factor (as the number of models increases) of the original combinatorial problem by relaxing the solution. This relaxation brings two advantages: first, by operating in the continuous domain we can parallelize the calculations. Second, it allows for the use of different metrics which results in a more general formulation. We demonstrate the versatility of our technique on two different problems of estimating structure from images: plane extraction from RGB-D data and homography estimation from pairs of images. In both cases, we report accurate results on publicly available datasets, in most of the cases outperforming the state-of-the-art

    Fast ADMM Algorithm for Distributed Optimization with Adaptive Penalty

    Full text link
    We propose new methods to speed up convergence of the Alternating Direction Method of Multipliers (ADMM), a common optimization tool in the context of large scale and distributed learning. The proposed method accelerates the speed of convergence by automatically deciding the constraint penalty needed for parameter consensus in each iteration. In addition, we also propose an extension of the method that adaptively determines the maximum number of iterations to update the penalty. We show that this approach effectively leads to an adaptive, dynamic network topology underlying the distributed optimization. The utility of the new penalty update schemes is demonstrated on both synthetic and real data, including a computer vision application of distributed structure from motion.Comment: 8 pages manuscript, 2 pages appendix, 5 figure
    • 

    corecore