16,109 research outputs found

    Overview of Parallel Platforms for Common High Performance Computing

    Get PDF
    The paper deals with various parallel platforms used for high performance computing in the signal processing domain. More precisely, the methods exploiting the multicores central processing units such as message passing interface and OpenMP are taken into account. The properties of the programming methods are experimentally proved in the application of a fast Fourier transform and a discrete cosine transform and they are compared with the possibilities of MATLAB's built-in functions and Texas Instruments digital signal processors with very long instruction word architectures. New FFT and DCT implementations were proposed and tested. The implementation phase was compared with CPU based computing methods and with possibilities of the Texas Instruments digital signal processing library on C6747 floating-point DSPs. The optimal combination of computing methods in the signal processing domain and new, fast routines' implementation is proposed as well

    Type-II/III DCT/DST algorithms with reduced number of arithmetic operations

    Full text link
    We present algorithms for the discrete cosine transform (DCT) and discrete sine transform (DST), of types II and III, that achieve a lower count of real multiplications and additions than previously published algorithms, without sacrificing numerical accuracy. Asymptotically, the operation count is reduced from ~ 2N log_2 N to ~ (17/9) N log_2 N for a power-of-two transform size N. Furthermore, we show that a further N multiplications may be saved by a certain rescaling of the inputs or outputs, generalizing a well-known technique for N=8 by Arai et al. These results are derived by considering the DCT to be a special case of a DFT of length 4N, with certain symmetries, and then pruning redundant operations from a recent improved fast Fourier transform algorithm (based on a recursive rescaling of the conjugate-pair split radix algorithm). The improved algorithms for DCT-III, DST-II, and DST-III follow immediately from the improved count for the DCT-II.Comment: 9 page

    Fast Computation of Voigt Functions via Fourier Transforms

    Get PDF
    This work presents a method of computing Voigt functions and their derivatives, to high accuracy, on a uniform grid. It is based on an adaptation of Fourier-transform based convolution. The relative error of the result decreases as the fourth power of the computational effort. Because of its use of highly vectorizable operations for its core, it can be implemented very efficiently in scripting language environments which provide fast vector libraries. The availability of the derivatives makes it suitable as a function generator for non-linear fitting procedures.Comment: 8 pages, 1 figur

    Low-power Programmable Processor for Fast Fourier Transform Based on Transport Triggered Architecture

    Get PDF
    This paper describes a low-power processor tailored for fast Fourier transform computations where transport triggering template is exploited. The processor is software-programmable while retaining an energy-efficiency comparable to existing fixed-function implementations. The power savings are achieved by compressing the computation kernel into one instruction word. The word is stored in an instruction loop buffer, which is more power-efficient than regular instruction memory storage. The processor supports all power-of-two FFT sizes from 64 to 16384 and given 1 mJ of energy, it can compute 20916 transforms of size 1024.Comment: 5 pages, 4 figures, 1 table, ICASSP 2019 conferenc

    Sound propagation over uneven ground and irregular topography

    Get PDF
    Theoretical, computational, and experimental techniques for predicting the effects of irregular topography on long range sound propagation in the atmosphere was developed. Irregular topography here is understood to imply a ground surface that is not idealized as being perfectly flat or that is not idealized as having a constant specific acoustic impedance. The interest focuses on circumstances where the propagation is similar to what might be expected for noise from low altitude air vehicles flying over suburban or rural terrain, such that rays from the source arrive at angles close to grazing incidence

    XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations

    Full text link
    XMDS2 is a cross-platform, GPL-licensed, open source package for numerically integrating initial value problems that range from a single ordinary differential equation up to systems of coupled stochastic partial differential equations. The equations are described in a high-level XML-based script, and the package generates low-level optionally parallelised C++ code for the efficient solution of those equations. It combines the advantages of high-level simulations, namely fast and low-error development, with the speed, portability and scalability of hand-written code. XMDS2 is a complete redesign of the XMDS package, and features support for a much wider problem space while also producing faster code.Comment: 9 pages, 5 figure
    • …
    corecore