4,769 research outputs found

    Multiuser MIMO-OFDM Systems using Subcarrier Hopping

    No full text
    Recently space division multiple access (SDMA) assisted multiple-input–multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems invoking multiuser detection (MUD) techniques have attracted substantial research interest, which is capable of exploiting both transmitter multiplexing gain and receiver diversity gain. A new scheme referred to here as slowsubcarrierhopping (SSCH) assisted multiuser SDMA-OFDM, is proposed. It is shown that, with the aid of the so-called uniform SSCH (USSCH) pattern, the multiuser interference (MUI) experienced by the high-throughput SDMA-OFDM system can be effectively suppressed, resulting in a significant performance improvement. In the investigations conducted, the proposed USSCH-aided SDMA-OFDM system was capable of outperforming a range of SDMA-OFDM systems considered, including the conventional SDMA-OFDM system dispensing with the employment of frequency-hopping techniques. For example, at an Eb/N0 value of 12 dB, the proposed USSCH/SDMA-OFDM system reduced the bit error ratio (BER) by about three orders of magnitude, in comparison to the conventional SDMA-OFDM system, while maintaining a similar computational complexity

    Multipath Multiplexing for Capacity Enhancement in SIMO Wireless Systems

    Full text link
    This paper proposes a novel and simple orthogonal faster than Nyquist (OFTN) data transmission and detection approach for a single input multiple output (SIMO) system. It is assumed that the signal having a bandwidth BB is transmitted through a wireless channel with LL multipath components. Under this assumption, the current paper provides a novel and simple OFTN transmission and symbol-by-symbol detection approach that exploits the multiplexing gain obtained by the multipath characteristic of wideband wireless channels. It is shown that the proposed design can achieve a higher transmission rate than the existing one (i.e., orthogonal frequency division multiplexing (OFDM)). Furthermore, the achievable rate gap between the proposed approach and that of the OFDM increases as the number of receiver antennas increases for a fixed value of LL. This implies that the performance gain of the proposed approach can be very significant for a large-scale multi-antenna wireless system. The superiority of the proposed approach is shown theoretically and confirmed via numerical simulations. {Specifically, we have found {upper-bound average} rates of 15 bps/Hz and 28 bps/Hz with the OFDM and proposed approaches, respectively, in a Rayleigh fading channel with 32 receive antennas and signal to noise ratio (SNR) of 15.3 dB. The extension of the proposed approach for different system setups and associated research problems is also discussed.Comment: IEEE Transactions on Wireless Communication

    Power Allocation and Time-Domain Artificial Noise Design for Wiretap OFDM with Discrete Inputs

    Full text link
    Optimal power allocation for orthogonal frequency division multiplexing (OFDM) wiretap channels with Gaussian channel inputs has already been studied in some previous works from an information theoretical viewpoint. However, these results are not sufficient for practical system design. One reason is that discrete channel inputs, such as quadrature amplitude modulation (QAM) signals, instead of Gaussian channel inputs, are deployed in current practical wireless systems to maintain moderate peak transmission power and receiver complexity. In this paper, we investigate the power allocation and artificial noise design for OFDM wiretap channels with discrete channel inputs. We first prove that the secrecy rate function for discrete channel inputs is nonconcave with respect to the transmission power. To resolve the corresponding nonconvex secrecy rate maximization problem, we develop a low-complexity power allocation algorithm, which yields a duality gap diminishing in the order of O(1/\sqrt{N}), where N is the number of subcarriers of OFDM. We then show that independent frequency-domain artificial noise cannot improve the secrecy rate of single-antenna wiretap channels. Towards this end, we propose a novel time-domain artificial noise design which exploits temporal degrees of freedom provided by the cyclic prefix of OFDM systems {to jam the eavesdropper and boost the secrecy rate even with a single antenna at the transmitter}. Numerical results are provided to illustrate the performance of the proposed design schemes.Comment: 12 pages, 7 figures, accepted by IEEE Transactions on Wireless Communications, Jan. 201

    Uplink Sounding Reference Signal Coordination to Combat Pilot Contamination in 5G Massive MIMO

    Full text link
    To guarantee the success of massive multiple-input multiple-output (MIMO), one of the main challenges to solve is the efficient management of pilot contamination. Allocation of fully orthogonal pilot sequences across the network would provide a solution to the problem, but the associated overhead would make this approach infeasible in practical systems. Ongoing fifth-generation (5G) standardisation activities are debating the amount of resources to be dedicated to the transmission of pilot sequences, focussing on uplink sounding reference signals (UL SRSs) design. In this paper, we extensively evaluate the performance of various UL SRS allocation strategies in practical deployments, shedding light on their strengths and weaknesses. Furthermore, we introduce a novel UL SRS fractional reuse (FR) scheme, denoted neighbour-aware FR (FR-NA). The proposed FR-NA generalizes the fixed reuse paradigm, and entails a tradeoff between i) aggressively sharing some UL SRS resources, and ii) protecting other UL SRS resources with the aim of relieving neighbouring BSs from pilot contamination. Said features result in a cell throughput improvement over both fixed reuse and state-of-the-art FR based on a cell-centric perspective

    Cognitive Interference Alignment for OFDM Two-tiered Networks

    Full text link
    In this contribution, we introduce an interference alignment scheme that allows the coexistence of an orthogonal frequency division multiplexing (OFDM) macro-cell and a cognitive small-cell, deployed in a two-tiered structure and transmitting over the same bandwidth. We derive the optimal linear strategy for the single antenna secondary base station, maximizing the spectral efficiency of the opportunistic link, accounting for both signal sub-space structure and power loading strategy. Our analytical and numerical findings prove that the precoder structure proposed is optimal for the considered scenario in the face of Rayleigh and exponential decaying channels.Comment: 5 pages, 4 figures. Accepted and presented at the IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2012. Authors' final version. Copyright transferred to IEE

    A game theoretic approach to distributed resource allocation for OFDMA-based relaying networks

    Get PDF
    • 

    corecore