1,217 research outputs found

    Local Binary Pattern Approach for Fast Block Based Motion Estimation

    Get PDF
    With the rapid growth of video services on smartphones such as video conferencing, video telephone and WebTV, implementation of video compression on mobile terminal becomes extremely important. However, the low computation capability of mobile devices becomes a bottleneck which calls for low complexity techniques for video coding. This work presents two set of algorithms for reducing the complexity of motion estimation. Binary motion estimation techniques using one-bit and two-bit transforms reduce the computational complexity of matching error criterion, however sometimes generate inaccurate motion vectors. The first set includes two neighborhood matching based algorithms which attempt to reduce computations to only a fraction of other methods. Simulation results demonstrate that full search local binary pattern (FS-LBP) algorithm reconstruct visually more accurate frames compared to full search algorithm (FSA). Its reduced complexity LBP (RC-LBP) version decreases computations significantly to only a fraction of the other methods while maintaining acceptable performance. The second set introduces edge detection approach for partial distortion elimination based on binary patterns. Spiral partial distortion elimination (SpiralPDE) has been proposed in literature which matches the pixel-to-pixel distortion in a predefined manner. Since, the contribution of all the pixels to the distortion function is different, therefore, it is important to analyze and extract these cardinal pixels. The proposed algorithms are called lossless fast full search partial distortion elimination ME based on local binary patterns (PLBP) and lossy edge-detection pixel decimation technique based on local binary patterns (ELBP). PLBP reduces the matching complexity by matching more contributable pixels early by identifying the most diverse pixels in a local neighborhood. ELBP captures the most representative pixels in a block in order of contribution to the distortion function by evaluating whether the individual pixels belong to the edge or background. Experimental results demonstrate substantial reduction in computational complexity of ELBP with only a marginal loss in prediction quality

    Algoritmo de estimação de movimento e sua arquitetura de hardware para HEVC

    Get PDF
    Doutoramento em Engenharia EletrotécnicaVideo coding has been used in applications like video surveillance, video conferencing, video streaming, video broadcasting and video storage. In a typical video coding standard, many algorithms are combined to compress a video. However, one of those algorithms, the motion estimation is the most complex task. Hence, it is necessary to implement this task in real time by using appropriate VLSI architectures. This thesis proposes a new fast motion estimation algorithm and its implementation in real time. The results show that the proposed algorithm and its motion estimation hardware architecture out performs the state of the art. The proposed architecture operates at a maximum operating frequency of 241.6 MHz and is able to process 1080p@60Hz with all possible variables block sizes specified in HEVC standard as well as with motion vector search range of up to ±64 pixels.A codificação de vídeo tem sido usada em aplicações tais como, vídeovigilância, vídeo-conferência, video streaming e armazenamento de vídeo. Numa norma de codificação de vídeo, diversos algoritmos são combinados para comprimir o vídeo. Contudo, um desses algoritmos, a estimação de movimento é a tarefa mais complexa. Por isso, é necessário implementar esta tarefa em tempo real usando arquiteturas de hardware apropriadas. Esta tese propõe um algoritmo de estimação de movimento rápido bem como a sua implementação em tempo real. Os resultados mostram que o algoritmo e a arquitetura de hardware propostos têm melhor desempenho que os existentes. A arquitetura proposta opera a uma frequência máxima de 241.6 MHz e é capaz de processar imagens de resolução 1080p@60Hz, com todos os tamanhos de blocos especificados na norma HEVC, bem como um domínio de pesquisa de vetores de movimento até ±64 pixels

    Low Power Architectures for MPEG-4 AVC/H.264 Video Compression

    Get PDF

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Three-dimensional morphanalysis of the face.

    Get PDF
    The aim of the work reported in this thesis was to determine the extent to which orthogonal two-dimensional morphanalytic (universally relatable) craniofacial imaging methods can be extended into the realm of computer-based three-dimensional imaging. New methods are presented for capturing universally relatable laser-video surface data, for inter-relating facial surface scans and for constructing probabilistic facial averages. Universally relatable surface scans are captured using the fixed relations principle com- bined with a new laser-video scanner calibration method. Inter- subject comparison of facial surface scans is achieved using inter- active feature labelling and warping methods. These methods have been extended to groups of subjects to allow the construction of three-dimensional probabilistic facial averages. The potential of universally relatable facial surface data for applications such as growth studies and patient assessment is demonstrated. In addition, new methods for scattered data interpolation, for controlling overlap in image warping and a fast, high-resolution method for simulating craniofacial surgery are described. The results demonstrate that it is not only possible to extend universally relatable imaging into three dimensions, but that the extension also enhances the established methods, providing a wide range of new applications

    VLSI smart sensor-processor for fingerprint comparison

    Get PDF

    Evaluation of video based pedestrian and vehicle detection algorithms

    Full text link
    Video based detection systems rely on the ability to detect moving objects in video streams. Video based detection systems have applications in many fields like, intelligent transportation, automated surveillance etc. There are many approaches adopted for video based detection. Evaluation and selecting a suitable approach for pedestrian and vehicle detection is a challenging task. While evaluating the object detection algorithms, many factors should be considered in order to cope with unconstrained environments, non stationary background, different object motion patterns and the variation in types of object being detected. In this thesis, we implement and evaluate different video based detection algorithms used for pedestrian and vehicle detection. Video based pedestrian and vehicle detection involves object detection through background foreground segmentation and object tracking. For background foreground segmentation, frame differencing, background averaging, mixture of Gaussians and codebook methods were implemented. For object tracking, Mean-Shift tracking and Lucas Kanade optical flow tracking algorithms were implemented. The performance of each of these algorithms is evaluated by a comparative study; based on their performance such as ability to get good detection and tracking, CodeBook algorithm is selected as a candidate algorithm for background foreground segmentation and Mean-Shift tracking is used to track the detected objects for pedestrian and vehicle detection

    Fast motion estimation algorithm in H.264 standard

    Get PDF
    In H.264/AVC standard, the block motion estimation pattern is used to estimate the motion which is a very time consuming part. Although many fast algorithms have been proposed to reduce the huge calculation, the motion estimation time still cannot achieve the critical real time application. So to develop an algorithm which will be fast and having low complexity became a challenge in this standard.For this reasons, a lot of block motion estimation algorithms have been proposed. Typically the block motion estimation part is categorized into two parts. (1) Single pixel motion estimation (2) Fractional pixel motion estimation. In single pixel motion estimation one kind of fast motion algorithm uses fixed pattern like Three Step search, 2-D Logarithmic Search. Four Step search,Diamond Search, Hexagon Based Search. These algorithms are able to reduce the search point and get good coding quality. But the coding quality decreases when the fixed pattern does not fit the real life video sequence. In this thesis we tried to reduce the time complexity and number of search point by using an early termination method which is called adaptive threshold selection. We have used this method in three step search (TSS) and four step search and compared the performance with already existing block matching algorithm.This thesis work proposes fast sub-pixel motion estimation techniques having lower computational complexity. The proposed methods are based on mathematical models of the motion compensated prediction errors in compressing moving pictures. Unlike conventional hierarchical motion estimation techniques, the proposed methods avoid sub-pixel interpolation and subsequent secondary search after the integer-precision motion estimation, resulting in reduced computational time. In order to decide the coefficients of the models, the motion-compensated prediction errors of the neighboring pixels around the integer-pixel motion vector are utilized
    corecore