106 research outputs found

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    Improving a wireless localization system via machine learning techniques and security protocols

    Get PDF
    The recent advancements made in Internet of Things (IoT) devices have brought forth new opportunities for technologies and systems to be integrated into our everyday life. In this work, we investigate how edge nodes can effectively utilize 802.11 wireless beacon frames being broadcast from pre-existing access points in a building to achieve room-level localization. We explain the needed hardware and software for this system and demonstrate a proof of concept with experimental data analysis. Improvements to localization accuracy are shown via machine learning by implementing the random forest algorithm. Using this algorithm, historical data can train the model and make more informed decisions while tracking other nodes in the future. We also include multiple security protocols that can be taken to reduce the threat of both physical and digital attacks on the system. These threats include access point spoofing, side channel analysis, and packet sniffing, all of which are often overlooked in IoT devices that are rushed to market. Our research demonstrates the comprehensive combination of affordability, accuracy, and security possible in an IoT beacon frame-based localization system that has not been fully explored by the localization research community

    A multimodal Fingerprint-based Indoor Positioning System for airports

    Full text link
    [EN] Indoor Localization techniques are becoming popular in order to provide a seamless indoor positioning system enhancing the traditional GPS service that is only suitable for outdoor environments. Though there are proprietary and costly approaches targeting high accuracy positioning, Wi-Fi and BLE networks are widely deployed in many public and private buildings (e.g. shopping malls, airports, universities, etc.). These networks are accessible through mobile phones resulting in an effective commercial off-the-self basic infrastructure for an indoor service. The obtained positioning accuracy is still being improved and there is on-going research on algorithms adapted for Wi-Fi and BLE and also for the particularities of indoor environments. This paper focuses not only on indoor positioning techniques, but also on a multimodal approach. Traditional proposals employ only one network technology whereas this paper integrates two different technologies in order to provide improved accuracy. It also sets the basis for combining (merging) additional technologies, if available. The initial results show that the positioning service performs better with a multimodal approach compared to individual (monomodal) approaches and even compared with Google¿s geolocation service in public spaces such as airports.This work was supported in part by the European Commission through the Door to Door Information for Airports and Airlines Project under Grant GA 635885 and in part by the European Commission through the Interoperability of Heterogeneous IoT Platforms Project under Grant 687283.Molina Moreno, B.; Olivares-Gorriti, E.; Palau Salvador, CE.; Esteve Domingo, M. (2018). A multimodal Fingerprint-based Indoor Positioning System for airports. IEEE Access. 6:10092-10106. https://doi.org/10.1109/ACCESS.2018.2798918S1009210106

    Indoor navigation systems based on data mining techniques in internet of things: a survey

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Internet of Things (IoT) is turning into an essential part of daily life, and numerous IoT-based scenarios will be seen in future of modern cities ranging from small indoor situations to huge outdoor environments. In this era, navigation continues to be a crucial element in both outdoor and indoor environments, and many solutions have been provided in both cases. On the other side, recent smart objects have produced a substantial amount of various data which demands sophisticated data mining solutions to cope with them. This paper presents a detailed review of previous studies on using data mining techniques in indoor navigation systems for the loT scenarios. We aim to understand what type of navigation problems exist in different IoT scenarios with a focus on indoor environments and later on we investigate how data mining solutions can provide solutions on those challenges

    Indoor localisation by using wireless sensor nodes

    Get PDF
    This study is devoted to investigating and developing WSN based localisation approaches with high position accuracies indoors. The study initially summarises the design and implementation of localisation systems and WSN architecture together with the characteristics of LQI and RSSI values. A fingerprint localisation approach is utilised for indoor positioning applications. A k-nearest neighbourhood algorithm (k-NN) is deployed, using Euclidean distances between the fingerprint database and the object fingerprints, to estimate unknown object positions. Weighted LQI and RSSI values are calculated and the k-NN algorithm with different weights is utilised to improve the position detection accuracy. Different weight functions are investigated with the fingerprint localisation technique. A novel weight function which produced the maximum position accuracy is determined and employed in calculations. The study covered designing and developing the centroid localisation (CL) and weighted centroid localisation (WCL) approaches by using LQI values. A reference node localisation approach is proposed. A star topology of reference nodes are to be utilized and a 3-NN algorithm is employed to determine the nearest reference nodes to the object location. The closest reference nodes are employed to each nearest reference nodes and the object locations are calculated by using the differences between the closest and nearest reference nodes. A neighbourhood weighted localisation approach is proposed between the nearest reference nodes in star topology. Weights between nearest reference nodes are calculated by using Euclidean and physical distances. The physical distances between the object and the nearest reference nodes are calculated and the trigonometric techniques are employed to derive the object coordinates. An environmentally adaptive centroid localisation approach is proposed.Weighted standard deviation (STD) techniques are employed adaptively to estimate the unknown object positions. WSNs with minimum RSSI mean values are considered as reference nodes across the sensing area. The object localisation is carried out in two phases with respect to these reference nodes. Calculated object coordinates are later translated into the universal coordinate system to determine the actual object coordinates. Virtual fingerprint localisation technique is introduced to determine the object locations by using virtual fingerprint database. A physical fingerprint database is organised in the form of virtual database by using LQI distribution functions. Virtual database elements are generated among the physical database elements with linear and exponential distribution functions between the fingerprint points. Localisation procedures are repeated with virtual database and localisation accuracies are improved compared to the basic fingerprint approach. In order to reduce the computation time and effort, segmentation of the sensing area is introduced. Static and dynamic segmentation techniques are deployed. Segments are defined by RSS ranges and the unknown object is localised in one of these segments. Fingerprint techniques are applied only in the relevant segment to find the object location. Finally, graphical user interfaces (GUI) are utilised with application program interfaces (API), in all calculations to visualise unknown object locations indoors

    Sensors and Systems for Indoor Positioning

    Get PDF
    This reprint is a reprint of the articles that appeared in Sensors' (MDPI) Special Issue on “Sensors and Systems for Indoor Positioning". The published original contributions focused on systems and technologies to enable indoor applications
    • …
    corecore