149 research outputs found

    Prediction and Tracking of Moving Objects in Image Sequences

    Get PDF
    We employ a prediction model for moving object velocity and location estimation derived from Bayesian theory. The optical flow of a certain moving object depends on the history of its previous values. A joint optical flow estimation and moving object segmentation algorithm is used for the initialization of the tracking algorithm. The segmentation of the moving objects is determined by appropriately classifying the unlabeled and the occluding regions. Segmentation and optical flow tracking is used for predicting future frames

    Image interpolation using Shearlet based iterative refinement

    Get PDF
    This paper proposes an image interpolation algorithm exploiting sparse representation for natural images. It involves three main steps: (a) obtaining an initial estimate of the high resolution image using linear methods like FIR filtering, (b) promoting sparsity in a selected dictionary through iterative thresholding, and (c) extracting high frequency information from the approximation to refine the initial estimate. For the sparse modeling, a shearlet dictionary is chosen to yield a multiscale directional representation. The proposed algorithm is compared to several state-of-the-art methods to assess its objective as well as subjective performance. Compared to the cubic spline interpolation method, an average PSNR gain of around 0.8 dB is observed over a dataset of 200 images

    Integrated volume rendering and data analysis in wavelet space

    Get PDF

    Target-adaptive CNN-based pansharpening

    Full text link
    We recently proposed a convolutional neural network (CNN) for remote sensing image pansharpening obtaining a significant performance gain over the state of the art. In this paper, we explore a number of architectural and training variations to this baseline, achieving further performance gains with a lightweight network which trains very fast. Leveraging on this latter property, we propose a target-adaptive usage modality which ensures a very good performance also in the presence of a mismatch w.r.t. the training set, and even across different sensors. The proposed method, published online as an off-the-shelf software tool, allows users to perform fast and high-quality CNN-based pansharpening of their own target images on general-purpose hardware

    Novel Techniques for Processing Data with an FMCW radar

    Get PDF
    This dissertation examines and analyzes novel techniques that are useful in the collection and processing of data from a Frequency Modulated Continuous Wave Radar. The major topics discussed in this work are: reduction of amplitude modulation, signature collection without an anechoic chamber, transforming a signature into a matched filter, accounting for electromagnetic interference, accounting for digital noise, and the application of a Support Vector Machine to achieve classification. In addition, this work also provides a broad overview of a framework specifically developed to improve detection and classification without requiring expensive hardware modification. The four main categories analyzed in this work are distortion, spectral signature, optimal detection, and classification. Some notable contributions in this work include the assessment of a novel technique’s effectiveness to improve model accuracy by accounting for amplitude modulation in an FMCW radar, as well as discussion of improved techniques to perform signature collection with an FMCW radar in the absence of an anechoic chamber. The signature collection technique is a novel approach that utilizes physics and wavelets in an effort to improve Signal to Noise Ratio (SNR). This work also considers a novel technique to convert an FMCW target signature into coefficients for a matched filter, thus allowing for the full mathematical application of the optimal matched filter. In addition, this work provides an analysis of the improved performance of an FMCW radar through the development and use of a novel technique to account for both electromagnetic interference and digital noise. Finally the initial discovery, development, and refinement of an innovative application using SVM to classify the matched filter results of FMCW radar targets is given, thus resulting in previously uncollected and undocumented viable baseline data

    Novel Techniques for Processing Data with an FMCW radar

    Get PDF
    This dissertation examines and analyzes novel techniques that are useful in the collection and processing of data from a Frequency Modulated Continuous Wave Radar. The major topics discussed in this work are: reduction of amplitude modulation, signature collection without an anechoic chamber, transforming a signature into a matched filter, accounting for electromagnetic interference, accounting for digital noise, and the application of a Support Vector Machine to achieve classification. In addition, this work also provides a broad overview of a framework specifically developed to improve detection and classification without requiring expensive hardware modification. The four main categories analyzed in this work are distortion, spectral signature, optimal detection, and classification. Some notable contributions in this work include the assessment of a novel technique’s effectiveness to improve model accuracy by accounting for amplitude modulation in an FMCW radar, as well as discussion of improved techniques to perform signature collection with an FMCW radar in the absence of an anechoic chamber. The signature collection technique is a novel approach that utilizes physics and wavelets in an effort to improve Signal to Noise Ratio (SNR). This work also considers a novel technique to convert an FMCW target signature into coefficients for a matched filter, thus allowing for the full mathematical application of the optimal matched filter. In addition, this work provides an analysis of the improved performance of an FMCW radar through the development and use of a novel technique to account for both electromagnetic interference and digital noise. Finally the initial discovery, development, and refinement of an innovative application using SVM to classify the matched filter results of FMCW radar targets is given, thus resulting in previously uncollected and undocumented viable baseline data

    Densely-sampled light field reconstruction

    Get PDF
    In this chapter, we motivate the use of densely-sampled light fields as the representation which can bring the required density of light rays for the correct recreation of 3D visual cues such as focus and continuous parallax and can serve as an intermediary between light field sensing and light field display. We consider the problem of reconstructing such a representation from few camera views and approach it in a sparsification framework. More specifically, we demonstrate that the light field is well structured in the set of so-called epipolar images and can be sparsely represented by a dictionary of directional and multi-scale atoms called shearlets. We present the corresponding regularization method, along with its main algorithm and speed-accelerating modifications. Finally, we illustrate its applicability for the cases of holographic stereograms and light field compression.acceptedVersionPeer reviewe

    Compression of Spectral Images

    Get PDF
    • …
    corecore