817 research outputs found

    Adaptive monotone multigrid methods for nonlinear variational problems

    Get PDF
    A wide range of problems occurring in engineering and industry is characterized by the presence of a free (i.e. a priori unknown) boundary where the underlying physical situation is changing in a discontinuous way. Mathematically, such phenomena can be often reformulated as variational inequalities or related non–smooth minimization problems. In these research notes, we will describe a new and promising way of constructing fast solvers for the corresponding discretized problems providing globally convergent iterative schemes with (asymptotic) multigrid convergence speed. The presentation covers physical modelling, existence and uniqueness results, finite element approximation and adaptive mesh–refinement based on a posteriori error estimation. The numerical properties of the resulting adaptive multilevel algorithm are illustrated by typical applications, such as semiconductor device simulation or continuous casting

    Geometric partial differential equations: Theory, numerics and applications

    Get PDF
    This workshop concentrated on partial differential equations involving stationary and evolving surfaces in which geometric quantities play a major role. Mutual interest in this emerging field stimulated the interaction between analysis, numerical solution, and applications

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Courbure discrète : théorie et applications

    Get PDF
    International audienceThe present volume contains the proceedings of the 2013 Meeting on discrete curvature, held at CIRM, Luminy, France. The aim of this meeting was to bring together researchers from various backgrounds, ranging from mathematics to computer science, with a focus on both theory and applications. With 27 invited talks and 8 posters, the conference attracted 70 researchers from all over the world. The challenge of finding a common ground on the topic of discrete curvature was met with success, and these proceedings are a testimony of this wor

    Towards an efficient numerical simulation of complex 3D knee joint motion

    Get PDF
    We present a time-dependent finite element model of the human knee joint of full 3D geometric complexity together with advanced numerical algorithms needed for its simulation. The model comprises bones, cartilage and the major ligaments, while patella and menisci are still missing. Bones are modeled by linear elastic materials, cartilage by linear viscoelastic materials, and ligaments by one-dimensional nonlinear Cosserat rods. In order to capture the dynamical contact problems correctly, we solve the full PDEs of elasticity with strict contact inequalities. The spatio-temporal discretization follows a time layers approach (first time, then space discretization). For the time discretization of the elastic and viscoelastic parts we use a new contact-stabilized Newmark method, while for the Cosserat rods we choose an energy-momentum method. For the space discretization, we use linear finite elements for the elastic and viscoelastic parts and novel geodesic finite elements for the Cosserat rods. The coupled system is solved by a Dirichlet–Neumann method. The large algebraic systems of the bone–cartilage contact problems are solved efficiently by the truncated non-smooth Newton multigrid method

    Schnelle Löser für Partielle Differentialgleichungen

    Get PDF
    The workshop Schnelle Löser für partielle Differentialgleichungen, organised by Randolph E. Bank (La Jolla), Wolfgang Hackbusch (Leipzig), and Gabriel Wittum (Frankfurt am Main), was held May 22nd–May 28th, 2011. This meeting was well attended by 54 participants with broad geographic representation from 7 countries and 3 continents. This workshop was a nice blend of researchers with various backgrounds
    • …
    corecore