3,387 research outputs found

    A fast Metropolis-Hastings method for generating random correlation matrices

    Full text link
    We propose a novel Metropolis-Hastings algorithm to sample uniformly from the space of correlation matrices. Existing methods in the literature are based on elaborated representations of a correlation matrix, or on complex parametrizations of it. By contrast, our method is intuitive and simple, based the classical Cholesky factorization of a positive definite matrix and Markov chain Monte Carlo theory. We perform a detailed convergence analysis of the resulting Markov chain, and show how it benefits from fast convergence, both theoretically and empirically. Furthermore, in numerical experiments our algorithm is shown to be significantly faster than the current alternative approaches, thanks to its simple yet principled approach.Comment: 8 pages, 3 figures, 2018 conferenc

    Efficient Bayesian estimation of Markov model transition matrices with given stationary distribution

    Get PDF
    Direct simulation of biomolecular dynamics in thermal equilibrium is challenging due to the metastable nature of conformation dynamics and the computational cost of molecular dynamics. Biased or enhanced sampling methods may improve the convergence of expectation values of equilibrium probabilities and expectation values of stationary quantities significantly. Unfortunately the convergence of dynamic observables such as correlation functions or timescales of conformational transitions relies on direct equilibrium simulations. Markov state models are well suited to describe both, stationary properties and properties of slow dynamical processes of a molecular system, in terms of a transition matrix for a jump process on a suitable discretiza- tion of continuous conformation space. Here, we introduce statistical estimation methods that allow a priori knowledge of equilibrium probabilities to be incorporated into the estimation of dynamical observables. Both, maximum likelihood methods and an improved Monte Carlo sampling method for reversible transition ma- trices with fixed stationary distribution are given. The sampling approach is applied to a toy example as well as to simulations of the MR121-GSGS-W peptide, and is demonstrated to converge much more rapidly than a previous approach in [F. Noe, J. Chem. Phys. 128, 244103 (2008)]Comment: 15 pages, 8 figure

    Information-geometric Markov Chain Monte Carlo methods using Diffusions

    Get PDF
    Recent work incorporating geometric ideas in Markov chain Monte Carlo is reviewed in order to highlight these advances and their possible application in a range of domains beyond Statistics. A full exposition of Markov chains and their use in Monte Carlo simulation for Statistical inference and molecular dynamics is provided, with particular emphasis on methods based on Langevin diffusions. After this geometric concepts in Markov chain Monte Carlo are introduced. A full derivation of the Langevin diffusion on a Riemannian manifold is given, together with a discussion of appropriate Riemannian metric choice for different problems. A survey of applications is provided, and some open questions are discussed.Comment: 22 pages, 2 figure
    • ā€¦
    corecore