45,580 research outputs found

    A Fast Layout Algorithm for k-Level Graphs

    Get PDF
    In this paper, we present a fast layout algorithm for k-level graphs with given permutations of the vertices on each level. The algorithm can be used in particular as a third phase of the Sugiyama algorithm (1981). The Sugiyama algorithm computes a layout for an arbitrary graph by (1) converting it into a k-level graph, (2) reducing the number of edge crossings by permuting the vertices on the levels, and (3) assigning y-coordinates to the levels and x-coordinates to the vertices. In the layouts generated by our algorithm, every edge will have at most two bends, and will be drawn vertically between these bends

    A Distributed Multilevel Force-directed Algorithm

    Full text link
    The wide availability of powerful and inexpensive cloud computing services naturally motivates the study of distributed graph layout algorithms, able to scale to very large graphs. Nowadays, to process Big Data, companies are increasingly relying on PaaS infrastructures rather than buying and maintaining complex and expensive hardware. So far, only a few examples of basic force-directed algorithms that work in a distributed environment have been described. Instead, the design of a distributed multilevel force-directed algorithm is a much more challenging task, not yet addressed. We present the first multilevel force-directed algorithm based on a distributed vertex-centric paradigm, and its implementation on Giraph, a popular platform for distributed graph algorithms. Experiments show the effectiveness and the scalability of the approach. Using an inexpensive cloud computing service of Amazon, we draw graphs with ten million edges in about 60 minutes.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Dynamic Multilevel Graph Visualization

    Full text link
    We adapt multilevel, force-directed graph layout techniques to visualizing dynamic graphs in which vertices and edges are added and removed in an online fashion (i.e., unpredictably). We maintain multiple levels of coarseness using a dynamic, randomized coarsening algorithm. To ensure the vertices follow smooth trajectories, we employ dynamics simulation techniques, treating the vertices as point particles. We simulate fine and coarse levels of the graph simultaneously, coupling the dynamics of adjacent levels. Projection from coarser to finer levels is adaptive, with the projection determined by an affine transformation that evolves alongside the graph layouts. The result is a dynamic graph visualizer that quickly and smoothly adapts to changes in a graph.Comment: 21 page

    A Sparse Stress Model

    Full text link
    Force-directed layout methods constitute the most common approach to draw general graphs. Among them, stress minimization produces layouts of comparatively high quality but also imposes comparatively high computational demands. We propose a speed-up method based on the aggregation of terms in the objective function. It is akin to aggregate repulsion from far-away nodes during spring embedding but transfers the idea from the layout space into a preprocessing phase. An initial experimental study informs a method to select representatives, and subsequent more extensive experiments indicate that our method yields better approximations of minimum-stress layouts in less time than related methods.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Fast filtering and animation of large dynamic networks

    Full text link
    Detecting and visualizing what are the most relevant changes in an evolving network is an open challenge in several domains. We present a fast algorithm that filters subsets of the strongest nodes and edges representing an evolving weighted graph and visualize it by either creating a movie, or by streaming it to an interactive network visualization tool. The algorithm is an approximation of exponential sliding time-window that scales linearly with the number of interactions. We compare the algorithm against rectangular and exponential sliding time-window methods. Our network filtering algorithm: i) captures persistent trends in the structure of dynamic weighted networks, ii) smoothens transitions between the snapshots of dynamic network, and iii) uses limited memory and processor time. The algorithm is publicly available as open-source software.Comment: 6 figures, 2 table

    GraphMaps: Browsing Large Graphs as Interactive Maps

    Full text link
    Algorithms for laying out large graphs have seen significant progress in the past decade. However, browsing large graphs remains a challenge. Rendering thousands of graphical elements at once often results in a cluttered image, and navigating these elements naively can cause disorientation. To address this challenge we propose a method called GraphMaps, mimicking the browsing experience of online geographic maps. GraphMaps creates a sequence of layers, where each layer refines the previous one. During graph browsing, GraphMaps chooses the layer corresponding to the zoom level, and renders only those entities of the layer that intersect the current viewport. The result is that, regardless of the graph size, the number of entities rendered at each view does not exceed a predefined threshold, yet all graph elements can be explored by the standard zoom and pan operations. GraphMaps preprocesses a graph in such a way that during browsing, the geometry of the entities is stable, and the viewer is responsive. Our case studies indicate that GraphMaps is useful in gaining an overview of a large graph, and also in exploring a graph on a finer level of detail.Comment: submitted to GD 201
    corecore