12,132 research outputs found

    RACOFI: A Rule-Applying Collaborative Filtering System

    Get PDF
    In this paper we give an overview of the RACOFI (Rule-Applying Collaborative Filtering) multidimensional rating system and its related technologies. This will be exemplified with RACOFI Music, an implemented collaboration agent that assists on-line users in the rating and recommendation of audio (Learning) Objects. It lets users rate contemporary Canadian music in the five dimensions of impression, lyrics, music, originality, and production. The collaborative filtering algorithms STI Pearson, STIN2, and the Per Item Average algorithms are then employed together with RuleML-based rules to recommend music objects that best match user queries. RACOFI has been on-line since August 2003 at http://racofi.elg.ca.

    Benchmarking News Recommendations in a Living Lab

    Get PDF
    Most user-centric studies of information access systems in literature suffer from unrealistic settings or limited numbers of users who participate in the study. In order to address this issue, the idea of a living lab has been promoted. Living labs allow us to evaluate research hypotheses using a large number of users who satisfy their information need in a real context. In this paper, we introduce a living lab on news recommendation in real time. The living lab has first been organized as News Recommendation Challenge at ACM RecSys’13 and then as campaign-style evaluation lab NEWSREEL at CLEF’14. Within this lab, researchers were asked to provide news article recommendations to millions of users in real time. Different from user studies which have been performed in a laboratory, these users are following their own agenda. Consequently, laboratory bias on their behavior can be neglected. We outline the living lab scenario and the experimental setup of the two benchmarking events. We argue that the living lab can serve as reference point for the implementation of living labs for the evaluation of information access systems

    Learning and Transferring IDs Representation in E-commerce

    Full text link
    Many machine intelligence techniques are developed in E-commerce and one of the most essential components is the representation of IDs, including user ID, item ID, product ID, store ID, brand ID, category ID etc. The classical encoding based methods (like one-hot encoding) are inefficient in that it suffers sparsity problems due to its high dimension, and it cannot reflect the relationships among IDs, either homogeneous or heterogeneous ones. In this paper, we propose an embedding based framework to learn and transfer the representation of IDs. As the implicit feedbacks of users, a tremendous amount of item ID sequences can be easily collected from the interactive sessions. By jointly using these informative sequences and the structural connections among IDs, all types of IDs can be embedded into one low-dimensional semantic space. Subsequently, the learned representations are utilized and transferred in four scenarios: (i) measuring the similarity between items, (ii) transferring from seen items to unseen items, (iii) transferring across different domains, (iv) transferring across different tasks. We deploy and evaluate the proposed approach in Hema App and the results validate its effectiveness.Comment: KDD'18, 9 page
    • …
    corecore