194 research outputs found

    Unsupervised learning on social data

    Get PDF

    Unsupervised learning on social data

    Get PDF

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Visual Scene Understanding by Deep Fisher Discriminant Learning

    No full text
    Modern deep learning has recently revolutionized several fields of classic machine learning and computer vision, such as, scene understanding, natural language processing and machine translation. The substitution of feature hand-crafting with automatic feature learning, provides an excellent opportunity for gaining an in-depth understanding of large-scale data statistics. Deep neural networks generally train models with huge numbers of parameters, facilitating efficient search for optimal and sub-optimal spaces of highly non-convex objective functions. On the other hand, Fisher discriminant analysis has been widely employed to impose class discrepancy, for the sake of segmentation, classification, and recognition tasks. This thesis bridges between contemporary deep learning and classic discriminant analysis, to accommodate some important challenges in visual scene understanding, i.e. semantic segmentation, texture classification, and object recognition. The aim is to accomplish specific tasks in some new high-dimensional spaces, covered by the statistical information of the datasets under study. Inspired by a new formulation of Fisher discriminant analysis, this thesis introduces some novel arrangements of well-known deep learning architectures, to achieve better performances on the targeted missions. The theoretical justifications are based upon a large body of experimental work, and consolidate the contribution of the proposed idea; Deep Fisher Discriminant Learning, to several challenges in visual scene understanding

    Vereinheitlichte Anfrageverarbeitung in heterogenen und verteilten Multimediadatenbanken

    Get PDF
    Multimedia retrieval is an essential part of today's world. This situation is observable in industrial domains, e.g., medical imaging, as well as in the private sector, visible by activities in manifold Social Media platforms. This trend led to the creation of a huge environment of multimedia information retrieval services offering multimedia resources for almost any user requests. Indeed, the encompassed data is in general retrievable by (proprietary) APIs and query languages, but unfortunately a unified access is not given due to arising interoperability issues between those services. In this regard, this thesis focuses on two application scenarios, namely a medical retrieval system supporting a radiologist's workflow, as well as an interoperable image retrieval service interconnecting diverse data silos. The scientific contribution of this dissertation is split in three different parts: the first part of this thesis improves the metadata interoperability issue. Here, major contributions to a community-driven, international standardization have been proposed leading to the specification of an API and ontology to enable a unified annotation and retrieval of media resources. The second part issues a metasearch engine especially designed for unified retrieval in distributed and heterogeneous multimedia retrieval environments. This metasearch engine is capable of being operated in a federated as well as autonomous manner inside the aforementioned application scenarios. The remaining third part ensures an efficient retrieval due to the integration of optimization techniques for multimedia retrieval in the overall query execution process of the metasearch engine.Egal ob im industriellen Bereich oder auch im Social Media - multimediale Daten nehmen eine immer zentralere Rolle ein. Aus diesem fortlaufendem Entwicklungsprozess entwickelten sich umfangreiche Informationssysteme, die Daten für zahlreiche Bedürfnisse anbieten. Allerdings ist ein einheitlicher Zugriff auf jene verteilte und heterogene Landschaft von Informationssystemen in der Praxis nicht gewährleistet. Und dies, obwohl die Datenbestände meist über Schnittstellen abrufbar sind. Im Detail widmet sich diese Arbeit mit der Bearbeitung zweier Anwendungsszenarien. Erstens, einem medizinischen System zur Diagnoseunterstützung und zweitens einer interoperablen, verteilten Bildersuche. Der wissenschaftliche Teil der vorliegenden Dissertation gliedert sich in drei Teile: Teil eins befasst sich mit dem Problem der Interoperabilität zwischen verschiedenen Metadatenformaten. In diesem Bereich wurden maßgebliche Beiträge für ein internationales Standardisierungsverfahren entwickelt. Ziel war es, einer Ontologie, sowie einer Programmierschnittstelle einen vereinheitlichten Zugriff auf multimediale Informationen zu ermöglichen. In Teil zwei wird eine externe Metasuchmaschine vorgestellt, die eine einheitliche Anfrageverarbeitung in heterogenen und verteilten Multimediadatenbanken ermöglicht. In den Anwendungsszenarien wird zum einen auf eine föderative, als auch autonome Anfrageverarbeitung eingegangen. Abschließend werden in Teil drei Techniken zur Optimierung von verteilten multimedialen Anfragen präsentiert

    Spatial and temporal background modelling of non-stationary visual scenes

    Get PDF
    PhDThe prevalence of electronic imaging systems in everyday life has become increasingly apparent in recent years. Applications are to be found in medical scanning, automated manufacture, and perhaps most significantly, surveillance. Metropolitan areas, shopping malls, and road traffic management all employ and benefit from an unprecedented quantity of video cameras for monitoring purposes. But the high cost and limited effectiveness of employing humans as the final link in the monitoring chain has driven scientists to seek solutions based on machine vision techniques. Whilst the field of machine vision has enjoyed consistent rapid development in the last 20 years, some of the most fundamental issues still remain to be solved in a satisfactory manner. Central to a great many vision applications is the concept of segmentation, and in particular, most practical systems perform background subtraction as one of the first stages of video processing. This involves separation of ‘interesting foreground’ from the less informative but persistent background. But the definition of what is ‘interesting’ is somewhat subjective, and liable to be application specific. Furthermore, the background may be interpreted as including the visual appearance of normal activity of any agents present in the scene, human or otherwise. Thus a background model might be called upon to absorb lighting changes, moving trees and foliage, or normal traffic flow and pedestrian activity, in order to effect what might be termed in ‘biologically-inspired’ vision as pre-attentive selection. This challenge is one of the Holy Grails of the computer vision field, and consequently the subject has received considerable attention. This thesis sets out to address some of the limitations of contemporary methods of background segmentation by investigating methods of inducing local mutual support amongst pixels in three starkly contrasting paradigms: (1) locality in the spatial domain, (2) locality in the shortterm time domain, and (3) locality in the domain of cyclic repetition frequency. Conventional per pixel models, such as those based on Gaussian Mixture Models, offer no spatial support between adjacent pixels at all. At the other extreme, eigenspace models impose a structure in which every image pixel bears the same relation to every other pixel. But Markov Random Fields permit definition of arbitrary local cliques by construction of a suitable graph, and 3 are used here to facilitate a novel structure capable of exploiting probabilistic local cooccurrence of adjacent Local Binary Patterns. The result is a method exhibiting strong sensitivity to multiple learned local pattern hypotheses, whilst relying solely on monochrome image data. Many background models enforce temporal consistency constraints on a pixel in attempt to confirm background membership before being accepted as part of the model, and typically some control over this process is exercised by a learning rate parameter. But in busy scenes, a true background pixel may be visible for a relatively small fraction of the time and in a temporally fragmented fashion, thus hindering such background acquisition. However, support in terms of temporal locality may still be achieved by using Combinatorial Optimization to derive shortterm background estimates which induce a similar consistency, but are considerably more robust to disturbance. A novel technique is presented here in which the short-term estimates act as ‘pre-filtered’ data from which a far more compact eigen-background may be constructed. Many scenes entail elements exhibiting repetitive periodic behaviour. Some road junctions employing traffic signals are among these, yet little is to be found amongst the literature regarding the explicit modelling of such periodic processes in a scene. Previous work focussing on gait recognition has demonstrated approaches based on recurrence of self-similarity by which local periodicity may be identified. The present work harnesses and extends this method in order to characterize scenes displaying multiple distinct periodicities by building a spatio-temporal model. The model may then be used to highlight abnormality in scene activity. Furthermore, a Phase Locked Loop technique with a novel phase detector is detailed, enabling such a model to maintain correct synchronization with scene activity in spite of noise and drift of periodicity. This thesis contends that these three approaches are all manifestations of the same broad underlying concept: local support in each of the space, time and frequency domains, and furthermore, that the support can be harnessed practically, as will be demonstrated experimentally

    Enhancing Reaction-based de novo Design using Machine Learning

    Get PDF
    De novo design is a branch of chemoinformatics that is concerned with the rational design of molecular structures with desired properties, which specifically aims at achieving suitable pharmacological and safety profiles when applied to drug design. Scoring, construction, and search methods are the main components that are exploited by de novo design programs to explore the chemical space to encourage the cost-effective design of new chemical entities. In particular, construction methods are concerned with providing strategies for compound generation to address issues such as drug-likeness and synthetic accessibility. Reaction-based de novo design consists of combining building blocks according to transformation rules that are extracted from collections of known reactions, intending to restrict the enumerated chemical space into a manageable number of synthetically accessible structures. The reaction vector is an example of a representation that encodes topological changes occurring in reactions, which has been integrated within a structure generation algorithm to increase the chances of generating molecules that are synthesisable. The general aim of this study was to enhance reaction-based de novo design by developing machine learning approaches that exploit publicly available data on reactions. A series of algorithms for reaction standardisation, fingerprinting, and reaction vector database validation were introduced and applied to generate new data on which the entirety of this work relies. First, these collections were applied to the validation of a new ligand-based design tool. The tool was then used in a case study to design compounds which were eventually synthesised using very similar procedures to those suggested by the structure generator. A reaction classification model and a novel hierarchical labelling system were then developed to introduce the possibility of applying transformations by class. The model was augmented with an algorithm for confidence estimation, and was used to classify two datasets from industry and the literature. Results from the classification suggest that the model can be used effectively to gain insights on the nature of reaction collections. Classified reactions were further processed to build a reaction class recommendation model capable of suggesting appropriate reaction classes to apply to molecules according to their fingerprints. The model was validated, then integrated within the reaction vector-based design framework, which was assessed on its performance against the baseline algorithm. Results from the de novo design experiments indicate that the use of the recommendation model leads to a higher synthetic accessibility and a more efficient management of computational resources

    24th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    In the last three decades information modelling and knowledge bases have become essentially important subjects not only in academic communities related to information systems and computer science but also in the business area where information technology is applied. The series of European – Japanese Conference on Information Modelling and Knowledge Bases (EJC) originally started as a co-operation initiative between Japan and Finland in 1982. The practical operations were then organised by professor Ohsuga in Japan and professors Hannu Kangassalo and Hannu Jaakkola in Finland (Nordic countries). Geographical scope has expanded to cover Europe and also other countries. Workshop characteristic - discussion, enough time for presentations and limited number of participants (50) / papers (30) - is typical for the conference. Suggested topics include, but are not limited to: 1. Conceptual modelling: Modelling and specification languages; Domain-specific conceptual modelling; Concepts, concept theories and ontologies; Conceptual modelling of large and heterogeneous systems; Conceptual modelling of spatial, temporal and biological data; Methods for developing, validating and communicating conceptual models. 2. Knowledge and information modelling and discovery: Knowledge discovery, knowledge representation and knowledge management; Advanced data mining and analysis methods; Conceptions of knowledge and information; Modelling information requirements; Intelligent information systems; Information recognition and information modelling. 3. Linguistic modelling: Models of HCI; Information delivery to users; Intelligent informal querying; Linguistic foundation of information and knowledge; Fuzzy linguistic models; Philosophical and linguistic foundations of conceptual models. 4. Cross-cultural communication and social computing: Cross-cultural support systems; Integration, evolution and migration of systems; Collaborative societies; Multicultural web-based software systems; Intercultural collaboration and support systems; Social computing, behavioral modeling and prediction. 5. Environmental modelling and engineering: Environmental information systems (architecture); Spatial, temporal and observational information systems; Large-scale environmental systems; Collaborative knowledge base systems; Agent concepts and conceptualisation; Hazard prediction, prevention and steering systems. 6. Multimedia data modelling and systems: Modelling multimedia information and knowledge; Contentbased multimedia data management; Content-based multimedia retrieval; Privacy and context enhancing technologies; Semantics and pragmatics of multimedia data; Metadata for multimedia information systems. Overall we received 56 submissions. After careful evaluation, 16 papers have been selected as long paper, 17 papers as short papers, 5 papers as position papers, and 3 papers for presentation of perspective challenges. We thank all colleagues for their support of this issue of the EJC conference, especially the program committee, the organising committee, and the programme coordination team. The long and the short papers presented in the conference are revised after the conference and published in the Series of “Frontiers in Artificial Intelligence” by IOS Press (Amsterdam). The books “Information Modelling and Knowledge Bases” are edited by the Editing Committee of the conference. We believe that the conference will be productive and fruitful in the advance of research and application of information modelling and knowledge bases. Bernhard Thalheim Hannu Jaakkola Yasushi Kiyok

    Investigating and extending the methods in automated opinion analysis through improvements in phrase based analysis

    Get PDF
    Opinion analysis is an area of research which deals with the computational treatment of opinion statement and subjectivity in textual data. Opinion analysis has emerged over the past couple of decades as an active area of research, as it provides solutions to the issues raised by information overload. The problem of information overload has emerged with the advancements in communication technologies which gave rise to an exponential growth in user generated subjective data available online. Opinion analysis has a rich set of applications which are used to enable opportunities for organisations such as tracking user opinions about products, social issues in communities through to engagement in political participation etc.The opinion analysis area shows hyperactivity in recent years and research at different levels of granularity has, and is being undertaken. However it is observed that there are limitations in the state-of-the-art, especially as dealing with the level of granularities on their own does not solve current research issues. Therefore a novel sentence level opinion analysis approach utilising clause and phrase level analysis is proposed. This approach uses linguistic and syntactic analysis of sentences to understand the interdependence of words within sentences, and further uses rule based analysis for phrase level analysis to calculate the opinion at each hierarchical structure of a sentence. The proposed opinion analysis approach requires lexical and contextual resources for implementation. In the context of this Thesis the approach is further presented as part of an extended unifying framework for opinion analysis resulting in the design and construction of a novel corpus. The above contributions to the field (approach, framework and corpus) are evaluated within the Thesis and are found to make improvements on existing limitations in the field, particularly with regards to opinion analysis automation. Further work is required in integrating a mechanism for greater word sense disambiguation and in lexical resource development
    corecore