1,300 research outputs found

    Requirements for implementing real-time control functional modules on a hierarchical parallel pipelined system

    Get PDF
    Analysis of a robot control system leads to a broad range of processing requirements. One fundamental requirement of a robot control system is the necessity of a microcomputer system in order to provide sufficient processing capability.The use of multiple processors in a parallel architecture is beneficial for a number of reasons, including better cost performance, modular growth, increased reliability through replication, and flexibility for testing alternate control strategies via different partitioning. A survey of the progression from low level control synchronizing primitives to higher level communication tools is presented. The system communication and control mechanisms of existing robot control systems are compared to the hierarchical control model. The impact of this design methodology on the current robot control systems is explored

    Pipelined Asynchronous High Level Synthesis for General Programs

    Get PDF
    High-level synthesis (HLS) translates algorithms from software programming language into hardware. We use the dataflow HLS methodology to translate programs into asynchronous circuits by implementing programs using asynchronous dataflow elements as hardware building blocks. We extend the prior work in dataflow synthesis in the following aspects:i) we propose Fluid to synthesize pipelined dataflow circuits for real-world programs with complex control flows, which are not supported in the previous work; ii) we propose PipeLink to permit pipelined access to shared resources in the dataflow circuit. Dataflow circuit results in distributed control and an implicitly pipelined implementation. However, resource sharing in the presence of pipelining is challenging in this context due to the absence of a global scheduler. Traditional solutions to this problem impose restrictions on pipelining to guarantee mutually exclusive access to the shared resource, but PipeLink removes such restrictions and can generate pipelined asynchronous dataflow circuits for shared function calls, pipelined memory accesses and function pointers; iii) we apply several dataflow optimizations to improve the quality of the synthesized dataflow circuits; iv) we implement our system (Fluid + PipeLink) on the LLVM compiler framework, which allows us to take advantage of the optimization efforts from the compiler community; v) we compare our system with a widely-used academic HLS tool and two commercial HLS tools. Compared to commercial (academic) HLS tools, our system results in 12X (20X) reduction in energy, 1.29X (1.64X) improvement in throughput, 1.27X (1.61X) improvement in latency at a cost of 2.4X (1.61X) increase in the area

    A proposed synthesis method for Application-Specific Instruction Set Processors

    Get PDF
    Due to the rapid technology advancement in integrated circuit era, the need for the high computation performance together with increasing complexity and manufacturing costs has raised the demand for high-performance con fi gurable designs; therefore, the Application-Speci fi c Instruction Set Processors (ASIPs) are widely used in SoC design. The automated generation of software tools for ASIPs is a commonly used technique, but the automated hardware model generation is less frequently applied in terms of fi nal RTL implementations. Contrary to this, the fi nal register-transfer level models are usually created, at least partly, manually. This paper presents a novel approach for automated hardware model generation for ASIPs. The new solution is based on a novel abstract ASIP model and a modeling language (Algorithmic Microarchitecture Description Language, AMDL) optimized for this architecture model. The proposed AMDL-based pre-synthesis method is based on a set of pre-de fi ned VHDL implementation schemes, which ensure the qualities of the automatically generated register-transfer level models in terms of resource requirement and operation frequency. The design framework implementing the algorithms required by the synthesis method is also presented

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems

    A Behavioral Design Flow for Synthesis and Optimization of Asynchronous Systems

    Get PDF
    Asynchronous or clockless design is believed to hold the promise of alleviating many of the challenges currently facing microelectronic design. Distributing a high-speed clock signal across an entire chip is an increasing challenge, particularly as the number of transistors on chip continues to rise. With increasing heterogeneity in massively multi- core processors, the top-level system integration is already elastic in nature. Future computing technologies (e.g., nano, quantum, etc.) are expected to have unpredictable timing as well. Therefore, asynchronous design techniques are gaining relevance in mainstream design. Unfortunately, the field of asynchronous design lacks mature design tools for creating large-scale, high-performance or energy-efficient systems. This thesis attempts to fill the void by contributing a set of design methods and automated tools for synthesizing asynchronous systems from high-level specifications. In particular, this thesis provides methods and tools for: (i) generating high-speed pipelined implementations from behavioral specifications, (ii) sharing and scheduling resources to conserve area while providing high performance, and (iii) incorporating energy and power considerations into high-level design. These methods are incorporated into a comprehensive design flow that provides a choice of synthesis paths to the designer, and a mechanism to explore the spectrum between them. The first path specifically targets the highest-performance implementations using data-driven pipelined circuits. The second path provides an alternative approach that targets low-area implementations, providing for optimal resource sharing and optimal scheduling techniques to achieve performance targets. Finally, the third path through the design flow allows the entire spectrum between the two extremes to be explored. In particular, it is a hybrid approach that preserves a pipelined architecture but still allows sharing of resources. By varying performance targets, a wide range of designs can be realized. A variety of metrics are incorporated as constraints or cost functions: area, latency, cycle time, energy consumption, and peak power. Experimental results demonstrate the capability of the proposed design flow to quickly produce optimized specifications. By automating synthesis and optimization, this thesis shows that the designer effort necessary to produce a high-quality solution can be significantly reduced. It is hoped that this work provides a path towards more mature automation and design tools for asynchronous design

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Circuit design and analysis for on-FPGA communication systems

    No full text
    On-chip communication system has emerged as a prominently important subject in Very-Large- Scale-Integration (VLSI) design, as the trend of technology scaling favours logics more than interconnects. Interconnects often dictates the system performance, and, therefore, research for new methodologies and system architectures that deliver high-performance communication services across the chip is mandatory. The interconnect challenge is exacerbated in Field-Programmable Gate Array (FPGA), as a type of ASIC where the hardware can be programmed post-fabrication. Communication across an FPGA will be deteriorating as a result of interconnect scaling. The programmable fabrics, switches and the specific routing architecture also introduce additional latency and bandwidth degradation further hindering intra-chip communication performance. Past research efforts mainly focused on optimizing logic elements and functional units in FPGAs. Communication with programmable interconnect received little attention and is inadequately understood. This thesis is among the first to research on-chip communication systems that are built on top of programmable fabrics and proposes methodologies to maximize the interconnect throughput performance. There are three major contributions in this thesis: (i) an analysis of on-chip interconnect fringing, which degrades the bandwidth of communication channels due to routing congestions in reconfigurable architectures; (ii) a new analogue wave signalling scheme that significantly improves the interconnect throughput by exploiting the fundamental electrical characteristics of the reconfigurable interconnect structures. This new scheme can potentially mitigate the interconnect scaling challenges. (iii) a novel Dynamic Programming (DP)-network to provide adaptive routing in network-on-chip (NoC) systems. The DP-network architecture performs runtime optimization for route planning and dynamic routing which, effectively utilizes the in-silicon bandwidth. This thesis explores a new horizon in reconfigurable system design, in which new methodologies and concepts are proposed to enhance the on-FPGA communication throughput performance that is of vital importance in new technology processes

    Pfimbi: Accelerating Big Data Jobs Through Flow-Controlled Data Replication

    Get PDF
    The performance of HDFS is critical to big data software stacks and has been at the forefront of recent efforts from the industry and the open source community. A key problem is the lack of flexibility in how data replication is performed. To address this problem, this paper presents Pfimbi, the first alternative to HDFS that supports both synchronous and flow- controlled asynchronous data replication. Pfimbi has numerous benefits: It accelerates jobs, exploits under-utilized storage I/O bandwidth, and supports hierarchical storage I/O bandwidth allocation policies. We demonstrate that for a job trace derived from a Facebook workload, Pfimbi improves the average job runtime by 18% and by up to 46% in the best case. We also demonstrate that flow control is crucial to fully exploiting the benefits of asynchronous replication; removing Pfimbi’s flow control mechanisms resulted in a 2.7x increase in job runtime

    Investigate and classify various types of computer architecture

    Get PDF
    Issued as Final report, Project no. G-36-60
    • …
    corecore