753 research outputs found

    Design and Development of an FPGA-based Hardware Accelerator for Corner Feature Extraction and Genetic Algorithm-based SLAM System

    Get PDF
    Simultaneous Localization and Mapping (SLAM) systems are crucial parts of mobile robots. These systems require a large number of computing units, have significant real-time requirements and are also a vital factor which can determine the stability, operability and power consumption of robots. This thesis aims to improve the calculation speed of a lidar-based SLAM system in domestic scenes, reduce the power consumption of the SLAM algorithm, and reduce the overall cost of the whole platform. Lightweight, low-power and parallel optimization of SLAM algorithms are researched. In the thesis, two SLAM systems are designed and developed with a focus on energy-efficient and fast hardware-level design: a geometric method based on corner extraction and a genetic algorithm-based approach. Finally, an FPGA-based hardware accelerated SLAM is implemented and realized, and compared to a software-based system. As for the front-end SLAM system, a method of using a Corner Feature Extraction (CFE) algorithm on FPGA platforms is first proposed to improve the speed of the feature extraction. Considering building a back-end SLAM system with low power consumption, a SLAM system based on genetic algorithm combined with algorithms such as Extended Kalman Filter (EKF) and FastSLAM to reduce the amount of calculation in the SLAM system is also proposed. Finally, the thesis also proposes and implements an adaptive feature map which can replace a grid point map to reduce the amount of calculation and utilization of hardware resources. In this thesis, the lidar SLAM system with front-end and back-end parts mentioned above is implemented on the Xilinx PYNQ Z2 Platform. The implementation is operated on a mobile robot prototype and evaluated in real scenes. Compared with the implementation on the Raspberry Pi 3B+, the implementation in this thesis can save 86.25% of power consumption. The lidar SLAM system only takes 20 ms for location calculation in each scan which is 5.31 times faster compared with the software implementation with EKF

    Mixed marker-based/marker-less visual odometry system for mobile robots

    Get PDF
    When moving in generic indoor environments, robotic platforms generally rely solely on information provided by onboard sensors to determine their position and orientation. However, the lack of absolute references often leads to the introduction of severe drifts in estimates computed, making autonomous operations really hard to accomplish. This paper proposes a solution to alleviate the impact of the above issues by combining two vision‐based pose estimation techniques working on relative and absolute coordinate systems, respectively. In particular, the unknown ground features in the images that are captured by the vertical camera of a mobile platform are processed by a vision‐based odometry algorithm, which is capable of estimating the relative frame‐to‐frame movements. Then, errors accumulated in the above step are corrected using artificial markers displaced at known positions in the environment. The markers are framed from time to time, which allows the robot to maintain the drifts bounded by additionally providing it with the navigation commands needed for autonomous flight. Accuracy and robustness of the designed technique are demonstrated using an off‐the‐shelf quadrotor via extensive experimental test

    Robot Collaboration for Simultaneous Map Building and Localization

    Get PDF

    Adaptive and intelligent navigation of autonomous planetary rovers - A survey

    Get PDF
    The application of robotics and autonomous systems in space has increased dramatically. The ongoing Mars rover mission involving the Curiosity rover, along with the success of its predecessors, is a key milestone that showcases the existing capabilities of robotic technology. Nevertheless, there has still been a heavy reliance on human tele-operators to drive these systems. Reducing the reliance on human experts for navigational tasks on Mars remains a major challenge due to the harsh and complex nature of the Martian terrains. The development of a truly autonomous rover system with the capability to be effectively navigated in such environments requires intelligent and adaptive methods fitting for a system with limited resources. This paper surveys a representative selection of work applicable to autonomous planetary rover navigation, discussing some ongoing challenges and promising future research directions from the perspectives of the authors
    corecore