1,855 research outputs found

    4K4D: Real-Time 4D View Synthesis at 4K Resolution

    Full text link
    This paper targets high-fidelity and real-time view synthesis of dynamic 3D scenes at 4K resolution. Recently, some methods on dynamic view synthesis have shown impressive rendering quality. However, their speed is still limited when rendering high-resolution images. To overcome this problem, we propose 4K4D, a 4D point cloud representation that supports hardware rasterization and enables unprecedented rendering speed. Our representation is built on a 4D feature grid so that the points are naturally regularized and can be robustly optimized. In addition, we design a novel hybrid appearance model that significantly boosts the rendering quality while preserving efficiency. Moreover, we develop a differentiable depth peeling algorithm to effectively learn the proposed model from RGB videos. Experiments show that our representation can be rendered at over 400 FPS on the DNA-Rendering dataset at 1080p resolution and 80 FPS on the ENeRF-Outdoor dataset at 4K resolution using an RTX 4090 GPU, which is 30x faster than previous methods and achieves the state-of-the-art rendering quality. Our project page is available at https://zju3dv.github.io/4k4d/.Comment: Project Page: https://zju3dv.github.io/4k4

    Coordination of appearance and motion data for virtual view generation of traditional dances

    Get PDF
    A novel method is proposed for virtual view generation of traditional dances. In the proposed framework, a traditional dance is captured separately for appearance registration and motion registration. By coordinating the appearance and motion data, we can easily control virtual camera motion within a dancer-centered coordinate system. For this purpose, a coordination problem should be solved between the appearance and motion data, since they are captured separately and the dancer moves freely in the room. The present paper shows a practical algorithm to solve it. A set of algorithms are also provided for appearance and motion registration, and virtual view generation from archived data. In the appearance registration, a 3D human shape is recovered in each time from a set of input images after suppressing their backgrounds. By combining the recovered 3D shape and a set of images for each time, we can compose archived dance data. In the motion registration, stereoscopic tracking is accomplished for color markers placed on the dancer. A virtual view generation is formalized as a color blending among multiple views, and a novel and efficient algorithm is proposed for the composition of a natural virtual view from a set of images. In the proposed method, weightings of the linear combination are calculated from both an assumed viewpoint and a surface normal.</p
    • …
    corecore