10 research outputs found

    An improved block matching algorithm for motion estimation invideo sequences and application in robotics

    Get PDF
    Block Matching is one of the most efficient techniques for motion estimation for video sequences. Metaheuristic algorithms have been used effectively for motion estimation. In this paper, we propose two hybrid algorithms: Artificial Bee Colony with Differential Evolution and Harmony Search with Differential Evolution based motion estimation algorithms. Extensive experiments are conducted using four standard video sequences. The video sequences utilized for experimentation have all essential features such as different formats, resolutions and number of frames which are generally required in input video sequences. We compare the performance of the proposed algorithms with other algorithms considering various parameters such as Structural Similarity, Peak Signal to Noise Ratio, Average Number of Search Points etc. The comparative results demonstrate that the proposed algorithms outperformed other algorithms

    An improved block matching algorithm for motion estimation in video sequences and application in robotics

    Get PDF
    Block Matching is one of the most efficient techniques for motion estimation for video sequences. Metaheuristic algorithms have been used effectively for motion estimation. In this paper, we propose two hybrid algorithms: Artificial Bee Colony with Differential Evolution and Harmony Search with Differential Evolution based motion estimation algorithms. Extensive experiments are conducted using four standard video sequences. The video sequences utilized for experimentation have all essential features such as different formats, resolutions and number of frames which are generally required in input video sequences. We compare the performance of the proposed algorithms with other algorithms considering various parameters such as Structural Similarity, Peak Signal to Noise Ratio, Average Number of Search Points etc. The comparative results demonstrate that the proposed algorithms outperformed other algorithms

    Development of Fast Motion Estimation Algorithms for Video Comression

    Get PDF
    With the increasing popularity of technologies such as Internet streaming video and video conferencing, video compression has became an essential component of broadcast and entertainment media. Motion Estimation (ME) and compensation techniques, which can eliminate temporal redundancy between adjacent frames effectively, have been widely applied to popular video compression coding standards such as MPEG-2, MPEG-4. Traditional fast block matching algorithms are easily trapped into the local minima resulting in degradation on video quality to some extent after decoding. Since Evolutionary Computing Techniques are suitable for achieving global optimal solution, these techniques are introduced to do Motion Estimation procedure in this thesis. Zero Motion prejudgement is also included which aims at finding static macroblocks (MB) which do not need to perform remaining search thus reduces the computational cost. Simulation results obtained show that the proposed Clonal Particle Swarm Optimization algorithm given a very good improvement in reducing the computations overhead and achieves very good Peak Signal to Noise Ratio (PSNR) values, which makes the techniques more efficient than the conventional searching algorithms. To reduce the Motion vector overhead in Bidirectional frame prediction, in this thesis novel Bidirectional Motion Estimation algorithm based on PSO is also proposed and results shows that the proposed method can significantly reduces the computational complexity involved in the Bidirectional frame prediction and also least prediction error in all video sequence

    Some Intra-Frame and Inter-Frame Processing Schemes for Efficient Video Compression

    Get PDF
    Rapid increase in digital applications due to recent advances in digital communication and devices needs significant video information storing, processing and transmitting. But the amount of original captured video data is huge and thus makes the system complex in all kind of video processing.But applications demand a faster transmission in different sized electronic devices with good quality.Along with, limited bandwidth and memory for storage makes it challenging. These practical constraints for processing a huge amount of video data, makes video compression as active and challenging field of research. The aim of video compression is to remove redundancy of raw video while maintaining the quality and fidelity. For inter frame processing, motion estimation technique is significantly used to reduce temporal redundancy in almost all the video coding standards e.g. MPEG2, MPEG4, H264/AVC which uses state-of-art algorithm to provide higher compression with a perceptual quality.Though motion estimation is main contributor for higher compression, this is the most computationally complex part of video coding tools. So, it is always a requirement to design an algorithm that is both faster and accurate and provides higher compression but good quality output. The goal of this project is to propose an algorithm for motion estimation which will meet all the requirements and overcome all the practical limitations. In this thesis we analyze the motion of video sequences and some novel block matching based motion estimation algorithms are proposed to improve video coding efficiency in inter frame processing. Particle Swarm Optimization technique and Differential Evolutionary model is used for fast and accurate motion estimation and compensation. Spatial and temporal correlation is adapted for initial population. We followed some strategy for adaptive generations, particle population, particle location history preservation and exploitation. The experimental result shows that our proposed algorithm is efficient to maintain the accuracy. There is significant reduction of search points and thus computational complexity while achieving comparable performance in video coding. Spatial domain redundancy is reduced skipping the irrelevant or spatially co-related data by different sub-sampling algorithm.The sub-sampled intra-frame is up-sampled at the receiver side. The up-sampled high resolution frame requires to have good quality . The existing up-sampling or interpolation techniques produce undesirable blurring and ringing artifacts. To alleviate this problem, a novel spatio-temporal pre-processing approach is proposed to improve the quality. The proposed method use low frequency DCT (Discrete cosine transform) component to sub-sample the frame at the transmitter side. In transmitter side a preprocessing method is proposed where the received subsampled frame is passed through a Wiener filter which uses its local statistics in 3×3 neighborhood to modify pixel values. The output of Wiener filter is added with optimized multiple of high frequency component. The output is then passed through a DCT block to up-sample. Result shows that the proposed method outperforms popularly used interpolation techniques in terms of quality measure

    Fast and Efficient Foveated Video Compression Schemes for H.264/AVC Platform

    Get PDF
    Some fast and efficient foveated video compression schemes for H.264/AVC platform are presented in this dissertation. The exponential growth in networking technologies and widespread use of video content based multimedia information over internet for mass communication applications like social networking, e-commerce and education have promoted the development of video coding to a great extent. Recently, foveated imaging based image or video compression schemes are in high demand, as they not only match with the perception of human visual system (HVS), but also yield higher compression ratio. The important or salient regions are compressed with higher visual quality while the non-salient regions are compressed with higher compression ratio. From amongst the foveated video compression developments during the last few years, it is observed that saliency detection based foveated schemes are the keen areas of intense research. Keeping this in mind, we propose two multi-scale saliency detection schemes. (1) Multi-scale phase spectrum based saliency detection (FTPBSD); (2) Sign-DCT multi-scale pseudo-phase spectrum based saliency detection (SDCTPBSD). In FTPBSD scheme, a saliency map is determined using phase spectrum of a given image/video with unity magnitude spectrum. On the other hand, the proposed SDCTPBSD method uses sign information of discrete cosine transform (DCT) also known as sign-DCT (SDCT). It resembles the response of receptive field neurons of HVS. A bottom-up spatio-temporal saliency map is obtained by linear weighted sum of spatial saliency map and temporal saliency map. Based on these saliency detection techniques, foveated video compression (FVC) schemes (FVC-FTPBSD and FVC-SDCTPBSD) are developed to improve the compression performance further.Moreover, the 2D-discrete cosine transform (2D-DCT) is widely used in various video coding standards for block based transformation of spatial data. However, for directional featured blocks, 2D-DCT offers sub-optimal performance and may not able to efficiently represent video data with fewer coefficients that deteriorates compression ratio. Various directional transform schemes are proposed in literature for efficiently encoding such directional featured blocks. However, it is observed that these directional transform schemes suffer from many issues like ‘mean weighting defect’, use of a large number of DCTs and a number of scanning patterns. We propose a directional transform scheme based on direction-adaptive fixed length discrete cosine transform (DAFL-DCT) for intra-, and inter-frame to achieve higher coding efficiency in case of directional featured blocks.Furthermore, the proposed DAFL-DCT has the following two encoding modes. (1) Direction-adaptive fixed length ― high efficiency (DAFL-HE) mode for higher compression performance; (2) Direction-adaptive fixed length ― low complexity (DAFL-LC) mode for low complexity with a fair compression ratio. On the other hand, motion estimation (ME) exploits temporal correlation between video frames and yields significant improvement in compression ratio while sustaining high visual quality in video coding. Block-matching motion estimation (BMME) is the most popular approach due to its simplicity and efficiency. However, the real-world video sequences may contain slow, medium and/or fast motion activities. Further, a single search pattern does not prove efficient in finding best matched block for all motion types. In addition, it is observed that most of the BMME schemes are based on uni-modal error surface. Nevertheless, real-world video sequences may exhibit a large number of local minima available within a search window and thus possess multi-modal error surface (MES). Hence, the following two uni-modal error surface based and multi-modal error surface based motion estimation schemes are developed. (1) Direction-adaptive motion estimation (DAME) scheme; (2) Pattern-based modified particle swarm optimization motion estimation (PMPSO-ME) scheme. Subsequently, various fast and efficient foveated video compression schemes are developed with combination of these schemes to improve the video coding performance further while maintaining high visual quality to salient regions. All schemes are incorporated into the H.264/AVC video coding platform. Various experiments have been carried out on H.264/AVC joint model reference software (version JM 18.6). Computing various benchmark metrics, the proposed schemes are compared with other existing competitive schemes in terms of rate-distortion curves, Bjontegaard metrics (BD-PSNR, BD-SSIM and BD-bitrate), encoding time, number of search points and subjective evaluation to derive an overall conclusion

    A survey on video compression fast block matching algorithms

    Get PDF
    Video compression is the process of reducing the amount of data required to represent digital video while preserving an acceptable video quality. Recent studies on video compression have focused on multimedia transmission, videophones, teleconferencing, high definition television, CD-ROM storage, etc. The idea of compression techniques is to remove the redundant information that exists in the video sequences. Motion compensation predictive coding is the main coding tool for removing temporal redundancy of video sequences and it typically accounts for 50–80% of video encoding complexity. This technique has been adopted by all of the existing International Video Coding Standards. It assumes that the current frame can be locally modelled as a translation of the reference frames. The practical and widely method used to carry out motion compensated prediction is block matching algorithm. In this method, video frames are divided into a set of non-overlapped macroblocks and compared with the search area in the reference frame in order to find the best matching macroblock. This will carry out displacement vectors that stipulate the movement of the macroblocks from one location to another in the reference frame. Checking all these locations is called Full Search, which provides the best result. However, this algorithm suffers from long computational time, which necessitates improvement. Several methods of Fast Block Matching algorithm are developed to reduce the computation complexity. This paper focuses on a survey for two video compression techniques: the first is called the lossless block matching algorithm process, in which the computational time required to determine the matching macroblock of the Full Search is decreased while the resolution of the predicted frames is the same as for the Full Search. The second is called lossy block matching algorithm process, which reduces the computational complexity effectively but the search result's quality is not the same as for the Full Search
    corecore