4 research outputs found

    Structured Compressed Sensing: From Theory to Applications

    Full text link
    Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.Comment: To appear as an overview paper in IEEE Transactions on Signal Processin

    Orthogonal Time Frequency Space (OTFS) Modulation for Wireless Communications

    Full text link
    The orthogonal time frequency space (OTFS) modulation is a recently proposed multi-carrier transmission scheme, which innovatively multiplexes the information symbols in the delay-Doppler (DD) domain instead of the conventional time-frequency (TF) domain. The DD domain symbol multiplexing gives rise to a direct interaction between the DD domain information symbols and DD domain channel responses, which are usually quasi-static, compact, separable, and potentially sparse. Therefore, OTFS modulation enjoys appealing advantages over the conventional orthogonal frequency-division multiplexing (OFDM) modulation for wireless communications. In this thesis, we investigate the related subjects of OTFS modulation for wireless communications, specifically focusing on its signal detection, performance analysis, and applications. In specific, we first offer a literature review on the OTFS modulation in Chapter~1. Furthermore, a summary of wireless channels is given in Chapter 2. In particular, we discuss the characteristics of wireless channels in different domains and compare their properties. In Chapter 3, we present a detailed derivation of the OTFS concept based on the theory of Zak transform (ZT) and discrete Zak transform (DZT). We unveil the connections between OTFS modulation and DZT, where the DD domain interpretations of key components for modulation, such as pulse shaping, and matched-filtering, are highlighted. The main research contributions of this thesis appear in Chapter 4 to Chapter 7. In Chapter 4, we introduce the hybrid maximum a posteriori (MAP) and parallel interference cancellation (PIC) detection. This detection approach exploits the power discrepancy among different resolvable paths and can obtain near-optimal error performance with a reduced complexity. In Chapter 5, we propose the cross domain iterative detection for OTFS modulation by leveraging the unitary transformations among different domains. After presenting the key concepts of the cross domain iterative detection, we study its performance via state evolution. We show that the cross domain iterative detection can approach the optimal error performance theoretically. Our numerical results agree with our theoretical analysis and demonstrate a significant performance improvement compared to conventional OTFS detection methods. In Chapter 6, we investigate the error performance for coded OTFS systems based on the pairwise-error probability (PEP) analysis. We show that there exists a fundamental trade-off between the coding gain and the diversity gain for coded OTFS systems. According to this trade-off, we further provide some rule-of-thumb guidelines for code design in OTFS systems. In Chapter 7, we study the potential of OTFS modulation in integrated sensing and communication (ISAC) transmissions. We propose the concept of spatial-spreading to facilitate the ISAC design, which is able to discretize the angular domain, resulting in simple and insightful input-output relationships for both radar sensing and communication. Based on spatial-spreading, we verify the effectiveness of OTFS modulation in ISAC transmissions and demonstrate the performance improvements in comparison to the OFDM counterpart. A summary of this thesis is presented in Chapter 8, where we also discuss some potential research directions on OTFS modulation. The concept of OTFS modulation and the elegant theory of DD domain communication may have opened a new gate for the development of wireless communications, which is worthy to be further explored
    corecore