496 research outputs found

    Submodular Maximization Meets Streaming: Matchings, Matroids, and More

    Full text link
    We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching (MCM). We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range---they store only O(n)O(n) edges, using O(nlogn)O(n\log n) working memory---that achieve approximation ratios of 7.757.75 in a single pass and (3+ϵ)(3+\epsilon) in O(ϵ3)O(\epsilon^{-3}) passes respectively. The operations of these algorithms mimic those of Zelke's and McGregor's respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. In the sequel, we give generalizations of these results where the maximization is over "independent sets" in a very general sense. This generalization captures hypermatchings in hypergraphs as well as independence in the intersection of multiple matroids.Comment: 18 page

    The Maximum Traveling Salesman Problem with Submodular Rewards

    Full text link
    In this paper, we look at the problem of finding the tour of maximum reward on an undirected graph where the reward is a submodular function, that has a curvature of κ\kappa, of the edges in the tour. This problem is known to be NP-hard. We analyze two simple algorithms for finding an approximate solution. Both algorithms require O(V3)O(|V|^3) oracle calls to the submodular function. The approximation factors are shown to be 12+κ\frac{1}{2+\kappa} and max{23(2+κ),2/3(1κ)}\max\set{\frac{2}{3(2+\kappa)},2/3(1-\kappa)}, respectively; so the second method has better bounds for low values of κ\kappa. We also look at how these algorithms perform for a directed graph and investigate a method to consider edge costs in addition to rewards. The problem has direct applications in monitoring an environment using autonomous mobile sensors where the sensing reward depends on the path taken. We provide simulation results to empirically evaluate the performance of the algorithms.Comment: Extended version of ACC 2013 submission (including p-system greedy bound with curvature

    Small Space Stream Summary for Matroid Center

    Get PDF
    In the matroid center problem, which generalizes the k-center problem, we need to pick a set of centers that is an independent set of a matroid with rank r. We study this problem in streaming, where elements of the ground set arrive in the stream. We first show that any randomized one-pass streaming algorithm that computes a better than Delta-approximation for partition-matroid center must use Omega(r^2) bits of space, where Delta is the aspect ratio of the metric and can be arbitrarily large. This shows a quadratic separation between matroid center and k-center, for which the Doubling algorithm [Charikar et al., 1997] gives an 8-approximation using O(k)-space and one pass. To complement this, we give a one-pass algorithm for matroid center that stores at most O(r^2 log(1/epsilon)/epsilon) points (viz., stream summary) among which a (7+epsilon)-approximate solution exists, which can be found by brute force, or a (17+epsilon)-approximation can be found with an efficient algorithm. If we are allowed a second pass, we can compute a (3+epsilon)-approximation efficiently. We also consider the problem of matroid center with z outliers and give a one-pass algorithm that outputs a set of O((r^2+rz)log(1/epsilon)/epsilon) points that contains a (15+epsilon)-approximate solution. Our techniques extend to knapsack center and knapsack center with z outliers in a straightforward way, and we get algorithms that use space linear in the size of a largest feasible set (as opposed to quadratic space for matroid center)

    On Network Coding Capacity - Matroidal Networks and Network Capacity Regions

    Get PDF
    One fundamental problem in the field of network coding is to determine the network coding capacity of networks under various network coding schemes. In this thesis, we address the problem with two approaches: matroidal networks and capacity regions. In our matroidal approach, we prove the converse of the theorem which states that, if a network is scalar-linearly solvable then it is a matroidal network associated with a representable matroid over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable networks and representable matroids over finite fields in the framework of matroidal networks. We prove a theorem about the scalar-linear solvability of networks and field characteristics. We provide a method for generating scalar-linearly solvable networks that are potentially different from the networks that we already know are scalar-linearly solvable. In our capacity region approach, we define a multi-dimensional object, called the network capacity region, associated with networks that is analogous to the rate regions in information theory. For the network routing capacity region, we show that the region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. For the network linear coding capacity region, we construct a computable rational polytope, with respect to a given finite field, that inner bounds the linear coding capacity region and provide exact algorithms and approximation heuristics for computing the polytope. The exact algorithms and approximation heuristics we present are not polynomial time schemes and may depend on the output size.Comment: Master of Engineering Thesis, MIT, September 2010, 70 pages, 10 figure
    corecore