2,079 research outputs found

    Automatic frequency assignment for cellular telephones using constraint satisfaction techniques

    Get PDF
    We study the problem of automatic frequency assignment for cellular telephone systems. The frequency assignment problem is viewed as the problem to minimize the unsatisfied soft constraints in a constraint satisfaction problem (CSP) over a finite domain of frequencies involving co-channel, adjacent channel, and co-site constraints. The soft constraints are automatically derived from signal strength prediction data. The CSP is solved using a generalized graph coloring algorithm. Graph-theoretical results play a crucial role in making the problem tractable. Performance results from a real-world frequency assignment problem are presented. We develop the generalized graph coloring algorithm by stepwise refinement, starting from DSATUR and augmenting it with local propagation, constraint lifting, intelligent backtracking, redundancy avoidance, and iterative deepening

    Beyond Triangles: A Distributed Framework for Estimating 3-profiles of Large Graphs

    Full text link
    We study the problem of approximating the 33-profile of a large graph. 33-profiles are generalizations of triangle counts that specify the number of times a small graph appears as an induced subgraph of a large graph. Our algorithm uses the novel concept of 33-profile sparsifiers: sparse graphs that can be used to approximate the full 33-profile counts for a given large graph. Further, we study the problem of estimating local and ego 33-profiles, two graph quantities that characterize the local neighborhood of each vertex of a graph. Our algorithm is distributed and operates as a vertex program over the GraphLab PowerGraph framework. We introduce the concept of edge pivoting which allows us to collect 22-hop information without maintaining an explicit 22-hop neighborhood list at each vertex. This enables the computation of all the local 33-profiles in parallel with minimal communication. We test out implementation in several experiments scaling up to 640640 cores on Amazon EC2. We find that our algorithm can estimate the 33-profile of a graph in approximately the same time as triangle counting. For the harder problem of ego 33-profiles, we introduce an algorithm that can estimate profiles of hundreds of thousands of vertices in parallel, in the timescale of minutes.Comment: To appear in part at KDD'1

    Decompositions of Triangle-Dense Graphs

    Full text link
    High triangle density -- the graph property stating that a constant fraction of two-hop paths belong to a triangle -- is a common signature of social networks. This paper studies triangle-dense graphs from a structural perspective. We prove constructively that significant portions of a triangle-dense graph are contained in a disjoint union of dense, radius 2 subgraphs. This result quantifies the extent to which triangle-dense graphs resemble unions of cliques. We also show that our algorithm recovers planted clusterings in approximation-stable k-median instances.Comment: 20 pages. Version 1->2: Minor edits. 2->3: Strengthened {\S}3.5, removed appendi
    • …
    corecore