12,050 research outputs found

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    An efficient and principled method for detecting communities in networks

    Full text link
    A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasonable running times. We test the method both on real-world networks and on synthetic benchmarks and find that it gives results competitive with previous methods. We also show that the same approach can be used to extract nonoverlapping community divisions via a relaxation method, and demonstrate that the algorithm is competitively fast and accurate for the nonoverlapping problem.Comment: 14 pages, 5 figures, 1 tabl

    A parallel self-organizing community detection algorithm based on swarm intelligence for large scale complex networks

    Get PDF
    Community detection is a critical task for complex network analysis. It helps us to understand the properties of the system that a complex network represents and has significance to a wide range of applications. Nowadays, the challenges faced by community detection algorithms include overlapping community structure detection, large scale network analysis, dynamic changing of analyzed network topology and many more. In this paper a self-organizing community detection algorithm, based on the idea of swarm intelligence, was proposed and its parallel algorithm was designed on Giraph++ which is a semi-asynchronous parallel graph computation framework running on distributed environment. In the algorithm, a network of large size is firstly divided into a number of small sub-networks. Then, each sub-network is modeled as a self-evolving swarm intelligence sub-system, while each vertex within the sub-network acts iteratively to join into or leave from communities based on a set of predefined vertex action rules. Meanwhile, the local communities of a sub-network are sent to other sub-networks to make their members have a chance to join into, therefore connecting these self-evolving swarm intelligence sub-systems together as a whole, large and evolving, system. The vertex actions during evolution of a sub-network are sent as well to keep multiple community replicas being consistent. Thus network communication efficiency has a great impact on the algorithm’s performance. While there is no vertex changing in its belonging communities anymore, an optimal community structure of the whole network will have emerged as a result. In the algorithm it is natural that a vertex can join into multiple communities simultaneously, thus can be used for overlapping community detection. The algorithm deals with vertex and edge adding or deleting in the same way as the algorithm running, therefore inherently supports dynamic network analysis. The algorithm can be used for the analysis of large scale networks with its parallel version running on distributed environment. A variety of experiments conducted on synthesized networks have shown that the proposed algorithm can effectively detect community structures and its performance is much better than certain popular community detection algorithms

    Bi-Objective Community Detection (BOCD) in Networks using Genetic Algorithm

    Full text link
    A lot of research effort has been put into community detection from all corners of academic interest such as physics, mathematics and computer science. In this paper I have proposed a Bi-Objective Genetic Algorithm for community detection which maximizes modularity and community score. Then the results obtained for both benchmark and real life data sets are compared with other algorithms using the modularity and MNI performance metrics. The results show that the BOCD algorithm is capable of successfully detecting community structure in both real life and synthetic datasets, as well as improving upon the performance of previous techniques.Comment: 11 pages, 3 Figures, 3 Tables. arXiv admin note: substantial text overlap with arXiv:0906.061

    Clustering and Community Detection in Directed Networks: A Survey

    Full text link
    Networks (or graphs) appear as dominant structures in diverse domains, including sociology, biology, neuroscience and computer science. In most of the aforementioned cases graphs are directed - in the sense that there is directionality on the edges, making the semantics of the edges non symmetric. An interesting feature that real networks present is the clustering or community structure property, under which the graph topology is organized into modules commonly called communities or clusters. The essence here is that nodes of the same community are highly similar while on the contrary, nodes across communities present low similarity. Revealing the underlying community structure of directed complex networks has become a crucial and interdisciplinary topic with a plethora of applications. Therefore, naturally there is a recent wealth of research production in the area of mining directed graphs - with clustering being the primary method and tool for community detection and evaluation. The goal of this paper is to offer an in-depth review of the methods presented so far for clustering directed networks along with the relevant necessary methodological background and also related applications. The survey commences by offering a concise review of the fundamental concepts and methodological base on which graph clustering algorithms capitalize on. Then we present the relevant work along two orthogonal classifications. The first one is mostly concerned with the methodological principles of the clustering algorithms, while the second one approaches the methods from the viewpoint regarding the properties of a good cluster in a directed network. Further, we present methods and metrics for evaluating graph clustering results, demonstrate interesting application domains and provide promising future research directions.Comment: 86 pages, 17 figures. Physics Reports Journal (To Appear
    • …
    corecore