181 research outputs found

    A technique for accelerating iterative convergence in numerical integration, with application in transonic aerodynamics

    Get PDF
    A technique is described for the efficient numerical solution of nonlinear partial differential equations by rapid iteration. In particular, a special approach is described for applying the Aitken acceleration formula (a simple Pade approximant) for accelerating the iterative convergence. The method finds the most appropriate successive approximations, which are in a most nearly geometric sequence, for use in the Aitken formula. Simple examples are given to illustrate the use of the method. The method is then applied to the mixed elliptic-hyperbolic problem of steady, inviscid, transonic flow over an airfoil in a subsonic free stream

    EFFICIENT COMPUTATION OF THE WRIGHT FUNCTION AND ITS APPLICATIONS TO FRACTIONAL DIFFUSION-WAVE EQUATIONS

    Get PDF
    In this article, we deal with the efficient computation of the Wright function in the cases of interest for the expression of solutions of some fractional differential equations. The proposed algorithm is based on the inversion of the Laplace transform of a particular expression of the Wright function for which we discuss in detail the error analysis. We also present a code package that implements the algorithm proposed here in different programming languages. The analysis and implementation are accompanied by an extensive set of numerical experiments that validate both the theoretical estimates of the error and the applicability of the proposed method for representing the solutions of fractional differential equations

    Vector potential methods

    Get PDF
    Vector potential and related methods, for the simulation of both inviscid and viscous flows over aerodynamic configurations, are briefly reviewed. The advantages and disadvantages of several formulations are discussed and alternate strategies are recommended. Scalar potential, modified potential, alternate formulations of Euler equations, least-squares formulation, variational principles, iterative techniques and related methods, and viscous flow simulation are discussed

    Time-Space Fractional Heat Equation in the Unit Disk

    Get PDF
    We will study a maximal solution of the time-space fractional heat equation in complex domain. The fractional time is taken in the sense of the Riemann-Liouville operator, while the fractional space is assumed in the Srivastava-Owa operator. Here we employ some properties of the univalent functions in the unit disk to determine the upper bound of this solution. The maximal solution is illustrated in terms of the generalized hypergeometric functions
    • …
    corecore