87,806 research outputs found

    Computational intelligence-based prognosis for hybrid mechatronic system using improved Wiener process

    Get PDF
    In this article, a fast krill herd algorithm is developed for prognosis of hybrid mechatronic system using the improved Wiener degradation process. First, the diagnostic hybrid bond graph is used to model the hybrid mechatronic system and derive global analytical redundancy relations. Based on the global analytical redundancy relations, the fault signature matrix and mode change signature matrix for fault and mode change isolation can be obtained. Second, in order to determine the true faults from the suspected fault candidates after fault isolation, a fault estimation method based on adaptive square root cubature Kalman filter is proposed when the noise distributions are unknown. Then, the improved Wiener process incorporating nonlinear term is developed to build the degradation model of incipient fault based on the fault estimation results. For prognosis, the fast krill herd algorithm is proposed to estimate unknown degradation model coefficients. After that, the probability density function of remaining useful life is derived using the identified degradation model. Finally, the proposed methods are validated by simulations

    Computational Aspects of Optional P\'{o}lya Tree

    Full text link
    Optional P\'{o}lya Tree (OPT) is a flexible non-parametric Bayesian model for density estimation. Despite its merits, the computation for OPT inference is challenging. In this paper we present time complexity analysis for OPT inference and propose two algorithmic improvements. The first improvement, named Limited-Lookahead Optional P\'{o}lya Tree (LL-OPT), aims at greatly accelerate the computation for OPT inference. The second improvement modifies the output of OPT or LL-OPT and produces a continuous piecewise linear density estimate. We demonstrate the performance of these two improvements using simulations

    Stochastic Volatility Filtering with Intractable Likelihoods

    Full text link
    This paper is concerned with particle filtering for α\alpha-stable stochastic volatility models. The α\alpha-stable distribution provides a flexible framework for modeling asymmetry and heavy tails, which is useful when modeling financial returns. An issue with this distributional assumption is the lack of a closed form for the probability density function. To estimate the volatility of financial returns in this setting, we develop a novel auxiliary particle filter. The algorithm we develop can be easily applied to any hidden Markov model for which the likelihood function is intractable or computationally expensive. The approximate target distribution of our auxiliary filter is based on the idea of approximate Bayesian computation (ABC). ABC methods allow for inference on posterior quantities in situations when the likelihood of the underlying model is not available in closed form, but simulating samples from it is possible. The ABC auxiliary particle filter (ABC-APF) that we propose provides not only a good alternative to state estimation in stochastic volatility models, but it also improves on the existing ABC literature. It allows for more flexibility in state estimation while improving on the accuracy through better proposal distributions in cases when the optimal importance density of the filter is unavailable in closed form. We assess the performance of the ABC-APF on a simulated dataset from the α\alpha-stable stochastic volatility model and compare it to other currently existing ABC filters
    • …
    corecore