73,090 research outputs found

    Vision and Learning for Deliberative Monocular Cluttered Flight

    Full text link
    Cameras provide a rich source of information while being passive, cheap and lightweight for small and medium Unmanned Aerial Vehicles (UAVs). In this work we present the first implementation of receding horizon control, which is widely used in ground vehicles, with monocular vision as the only sensing mode for autonomous UAV flight in dense clutter. We make it feasible on UAVs via a number of contributions: novel coupling of perception and control via relevant and diverse, multiple interpretations of the scene around the robot, leveraging recent advances in machine learning to showcase anytime budgeted cost-sensitive feature selection, and fast non-linear regression for monocular depth prediction. We empirically demonstrate the efficacy of our novel pipeline via real world experiments of more than 2 kms through dense trees with a quadrotor built from off-the-shelf parts. Moreover our pipeline is designed to combine information from other modalities like stereo and lidar as well if available

    Progressive Analytics: A Computation Paradigm for Exploratory Data Analysis

    Get PDF
    Exploring data requires a fast feedback loop from the analyst to the system, with a latency below about 10 seconds because of human cognitive limitations. When data becomes large or analysis becomes complex, sequential computations can no longer be completed in a few seconds and data exploration is severely hampered. This article describes a novel computation paradigm called Progressive Computation for Data Analysis or more concisely Progressive Analytics, that brings at the programming language level a low-latency guarantee by performing computations in a progressive fashion. Moving this progressive computation at the language level relieves the programmer of exploratory data analysis systems from implementing the whole analytics pipeline in a progressive way from scratch, streamlining the implementation of scalable exploratory data analysis systems. This article describes the new paradigm through a prototype implementation called ProgressiVis, and explains the requirements it implies through examples.Comment: 10 page

    Enabling Depth-driven Visual Attention on the iCub Humanoid Robot: Instructions for Use and New Perspectives

    Get PDF
    The importance of depth perception in the interactions that humans have within their nearby space is a well established fact. Consequently, it is also well known that the possibility of exploiting good stereo information would ease and, in many cases, enable, a large variety of attentional and interactive behaviors on humanoid robotic platforms. However, the difficulty of computing real-time and robust binocular disparity maps from moving stereo cameras often prevents from relying on this kind of cue to visually guide robots' attention and actions in real-world scenarios. The contribution of this paper is two-fold: first, we show that the Efficient Large-scale Stereo Matching algorithm (ELAS) by A. Geiger et al. 2010 for computation of the disparity map is well suited to be used on a humanoid robotic platform as the iCub robot; second, we show how, provided with a fast and reliable stereo system, implementing relatively challenging visual behaviors in natural settings can require much less effort. As a case of study we consider the common situation where the robot is asked to focus the attention on one object close in the scene, showing how a simple but effective disparity-based segmentation solves the problem in this case. Indeed this example paves the way to a variety of other similar applications

    SlicerAstro: a 3-D interactive visual analytics tool for HI data

    Get PDF
    SKA precursors are capable of detecting hundreds of galaxies in HI in a single 12 hours pointing. In deeper surveys one will probe more easily faint HI structures, typically located in the vicinity of galaxies, such as tails, filaments, and extraplanar gas. The importance of interactive visualization has proven to be fundamental for the exploration of such data as it helps users to receive immediate feedback when manipulating the data. We have developed SlicerAstro, a 3-D interactive viewer with new analysis capabilities, based on traditional 2-D input/output hardware. These capabilities enhance the data inspection, allowing faster analysis of complex sources than with traditional tools. SlicerAstro is an open-source extension of 3DSlicer, a multi-platform open source software package for visualization and medical image processing. We demonstrate the capabilities of the current stable binary release of SlicerAstro, which offers the following features: i) handling of FITS files and astronomical coordinate systems; ii) coupled 2-D/3-D visualization; iii) interactive filtering; iv) interactive 3-D masking; v) and interactive 3-D modeling. In addition, SlicerAstro has been designed with a strong, stable and modular C++ core, and its classes are also accessible via Python scripting, allowing great flexibility for user-customized visualization and analysis tasks.Comment: 18 pages, 11 figures, Accepted by Astronomy and Computing. SlicerAstro link: https://github.com/Punzo/SlicerAstro/wiki#get-slicerastr

    DELPHES 3, A modular framework for fast simulation of a generic collider experiment

    Get PDF
    The version 3.0 of the DELPHES fast-simulation is presented. The goal of DELPHES is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The DELPHES framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of DELPHES are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.Comment: JHEP 1402 (2014

    NPLOT: an Interactive Plotting Program for NASTRAN Finite Element Models

    Get PDF
    The NPLOT (NASTRAN Plot) is an interactive computer graphics program for plotting undeformed and deformed NASTRAN finite element models. Developed at NASA's Goddard Space Flight Center, the program provides flexible element selection and grid point, ASET and SPC degree of freedom labelling. It is easy to use and provides a combination menu and command driven user interface. NPLOT also provides very fast hidden line and haloed line algorithms. The hidden line algorithm in NPLOT proved to be both very accurate and several times faster than other existing hidden line algorithms. A fast spatial bucket sort and horizon edge computation are used to achieve this high level of performance. The hidden line and the haloed line algorithms are the primary features that make NPLOT different from other plotting programs

    Design and analysis of adaptive hierarchical low-power long-range networks

    Get PDF
    A new phase of evolution of Machine-to-Machine (M2M) communication has started where vertical Internet of Things (IoT) deployments dedicated to a single application domain gradually change to multi-purpose IoT infrastructures that service different applications across multiple industries. New networking technologies are being deployed operating over sub-GHz frequency bands that enable multi-tenant connectivity over long distances and increase network capacity by enforcing low transmission rates to increase network capacity. Such networking technologies allow cloud-based platforms to be connected with large numbers of IoT devices deployed several kilometres from the edges of the network. Despite the rapid uptake of Long-power Wide-area Networks (LPWANs), it remains unclear how to organize the wireless sensor network in a scaleable and adaptive way. This paper introduces a hierarchical communication scheme that utilizes the new capabilities of Long-Range Wireless Sensor Networking technologies by combining them with broadly used 802.11.4-based low-range low-power technologies. The design of the hierarchical scheme is presented in detail along with the technical details on the implementation in real-world hardware platforms. A platform-agnostic software firmware is produced that is evaluated in real-world large-scale testbeds. The performance of the networking scheme is evaluated through a series of experimental scenarios that generate environments with varying channel quality, failing nodes, and mobile nodes. The performance is evaluated in terms of the overall time required to organize the network and setup a hierarchy, the energy consumption and the overall lifetime of the network, as well as the ability to adapt to channel failures. The experimental analysis indicate that the combination of long-range and short-range networking technologies can lead to scalable solutions that can service concurrently multiple applications
    corecore