12,554 research outputs found

    Constructing elliptic curves of prime order

    Full text link
    We present a very efficient algorithm to construct an elliptic curve E and a finite field F such that the order of the point group E(F) is a given prime number N. Heuristically, this algorithm only takes polynomial time Otilde((\log N)^3), and it is so fast that it may profitably be used to tackle the related problem of finding elliptic curves with point groups of prime order of prescribed size. We also discuss the impact of the use of high level modular functions to reduce the run time by large constant factors and show that recent gonality bounds for modular curves imply limits on the time reduction that can be obtained.Comment: 13 page

    Computing the cardinality of CM elliptic curves using torsion points

    Full text link
    Let E be an elliptic curve having complex multiplication by a given quadratic order of an imaginary quadratic field K. The field of definition of E is the ring class field Omega of the order. If the prime p splits completely in Omega, then we can reduce E modulo one the factors of p and get a curve Ep defined over GF(p). The trace of the Frobenius of Ep is known up to sign and we need a fast way to find this sign. For this, we propose to use the action of the Frobenius on torsion points of small order built with class invariants a la Weber, in a manner reminiscent of the Schoof-Elkies-Atkin algorithm for computing the cardinality of a given elliptic curve modulo p. We apply our results to the Elliptic Curve Primality Proving algorithm (ECPP).Comment: Revised and shortened version, including more material using discriminants of curves and division polynomial

    Implementing the asymptotically fast version of the elliptic curve primality proving algorithm

    Get PDF
    The elliptic curve primality proving (ECPP) algorithm is one of the current fastest practical algorithms for proving the primality of large numbers. Its running time cannot be proven rigorously, but heuristic arguments show that it should run in time O ((log N)^5) to prove the primality of N. An asymptotically fast version of it, attributed to J. O. Shallit, runs in time O ((log N)^4). The aim of this article is to describe this version in more details, leading to actual implementations able to handle numbers with several thousands of decimal digits

    A simple approach towards the sign problem using path optimisation

    Get PDF
    We suggest an approach for simulating theories with a sign problem that relies on optimisation of complex integration contours that are not restricted to lie along Lefschetz thimbles. To that end we consider the toy model of a one-dimensional Bose gas with chemical potential. We identify the main contribution to the sign problem in this case as coming from a nearest neighbour interaction and approximately cancel it by an explicit deformation of the integration contour. We extend the obtained expressions to more general ones, depending on a small set of parameters. We find the optimal values of these parameters on a small lattice and study their range of validity. We also identify precursors for the onset of the sign problem. A fast method of evaluating the Jacobian related to the contour deformation is proposed and its numerical stability is examined. For a particular choice of lattice parameters, we find that our approach increases the lattice size at which the sign problem becomes serious from L≈32L \approx 32 to L≈700L \approx 700. The efficient evaluation of the Jacobian (O(L)O(L) for a sweep) results in running times that are of the order of a few minutes on a standard laptop.Comment: V1: 25 pages, 8 figures; V2: 28 pages, 8 figures, the methods used for finding the contour parameters are clarified, further discussion added, typos corrected, refs adde
    • …
    corecore